Retém a instrução e não a largues. guarda-a, porque ela é a tua vida. (Pv. 4:13)
Retém a instrução e não a largues. Guarda-a, porque ela é a tua vida. (Pv. 4:13)
14 de fevereiro de 2012
10 de fevereiro de 2012
ÁREA DE FIGURAS PLANAS
1) A medida da base de um triângulo é de 7 cm, visto
que a medida da sua altura é de 3,5 cm, qual é a área deste triângulo?
2) Os lados de um triângulo equilátero medem 5 mm.
Qual é a área deste triângulo equilátero?
3) A medida da base de um paralelogramo é de 5,2 dm,
sendo que a medida da altura é de 1,5 dm. Qual é a área deste polígono?
4) Qual é a medida da área de um paralelogramo cujas
medidas da altura e da base são respectivamente 10 cm e 2 dm?
5) As diagonais de um losango medem 10 cm e 15 cm.
Qual é a medida da sua superfície?
6) Qual é a medida da área de um retângulo cuja base
mede 12 cm e cuja altura seja de 9 cm?
7) A lateral da tampa quadrada de uma caixa mede 17
cm. Qual a superfície desta tampa?
8) A medida do lado de um quadrado é de 20 cm. Qual
é a sua área?
9) A área de um quadrado é igual a 196 cm2.
Qual a medida do lado deste quadrado?
10) Um terreno mede 5 metros de largura por 25 metros
de comprimento. Qual é a área deste terreno?
11) A tampa de uma caixa de sapatos tem as dimensões
30 cm por 15 cm. Qual a área desta tampa?
12) A lente de uma lupa tem 10 cm de diâmetro. Qual é
a área da lente desta lupa?
13) Um círculo tem raio de 8,52 mm. Quantos
milímetros quadrados ele possui de superfície?
14) Calcule a área de um retângulo cujas dimensões são 4 cm e 6cm.
15) Qual é a área de um retângulo cuja base mede 8 cm e a altura, 3,5cm?
16) Um terreno retangular tem 15m de frente por 31,2m de fundo (lateral). Qual é a área desse terreno?
17) Num retângulo, a base
mede 20 cm e a altura mede 5,2 cm. Qual é a área desse retângulo?
18) Fernanda fez um cartaz com uma cartolina retangular que ocupa na parede uma área de
9600cm². Se um dos lados mede 80 cm, qual é a medida do outro lado?
19) Quantos metros quadrados de azulejo são necessários para revestir até o teto as paredes laterais de uma cozinha com as seguintes dimensões: 4m por 2,75m?
20) Quanto gastarei para forrar com carpete o piso de uma sala retangular de 4,5m por 3,5m, sabendo-se que o metro quadrado do carpete colocado custa R$ 17,00?
21) Calcule a área de um retângulo cuja base mede 10 cm e cuja altura mede 5,6 cm.
22) Uma placa de alumínio tem a forma retangular com as seguintes medidas: 1,20m por 0,65m. Qual a área dessa superfície?
23) O perímetro de um quadrado mede 20 cm.
Calcule a área do quadrado
24) O perímetro de um quadrado mede 14 m.
Calcule a área do quadrado.
25) Um campo de futebol tem 90 m de comprimento
por 60m de largura. Qual é a área desse campo?
|
27 ) A altura de um retângulo é 2 cm e o seu
perímetro 18 cm. Qual a área desse retângulo?
8 de fevereiro de 2012
DIVISÃO DE NÚMEROS NATURAIS
DIVISÃO
EXATA
Consideremos dois números naturais, dados numa certa ordem, 10 é o primeiro deles e 2 é o segundo .
Por meio deles determina-se um terceiro número natural que, multiplicado pelo segundo dá como resultado o primeiro. Essa operação chama-se divisão e é indicada pelo sinal :
Assim,
10:2 = 5 porque 5x2 = 10
Na divisão 10:2=5
dizemos que
10 é o dividendo
2 é o divisor
5 é o resultado ou quociente
EXEMPLO
Um colégio levou 72 alunos numa excursão ao jardim zoológico e para isso repartiu igualmente os alunos em 4 ônibus. Quantos alunos o colégio colocou em cada ônibus?
Para resolver esse problema, devemos fazer uma divisão 72 : 4 = 18 , sendo assim cada ônibus tinha 18 alunos.
EXERCÍCIOS
1) Calcule as divisões
a) 20:5= 4
b) 16:8= 2
c) 12:1= 12
d) 48:8= 6
e) 37:37= 1
f) 56:14= 4
2) Observe a igualdade 56:7=8 e responda:
a) Qual é o nome da operação?
R: divisão
b)Como se chama o número 56?
R: dividendo
c)Como se chama o número 7?
R: divisor
d)como se chama o número 8?
R: Quociente ou resultado
3) Responda
a)Qual é a metade de 784?
R: 392
b)Qual é a terça parte de 144?
R: 48
c)Qual é a quinta parte de 1800?
R: 360
d)Qual é a décima parte de 3500?
R: 350
4)Em um teatro há 126 poltronas distribuídas igualmente em 9 fileiras. Quantas poltronas foram colocadas em cada fileira?
R: 14 poltronas
5)Quantos garrafões de 5 litros são necessários para engarrafar 315 litros de vinho?
R: 63 garrafões
6)Uma pessoa ganha R$ 23,00 por hora de trabalho. Quanto tempo deverá trabalhar para receber R$ 391,00?
R: 17 horas
7)Uma torneira despeja 75 litros de água por hora. Quanto tempo levará para encher uma caixa de 3150 litros ?
(R: 42 horas)
8) Numa pista de atletismo uma volta tem 400 metros. Numa corrida de 10.000 metros, quantas voltas o atleta tem de dar nessa pista?
( R: 25 voltas)
9) Um livro tem 216 páginas. Quero terminar a leitura desse livro em 18 dias, lendo o mesmo número de páginas todos os dias. Quantas páginas preciso ler por dia?
R: 12 paginas
11)Quantos grupos de 18 alunos podem ser formados com 666 alunos?
R: 37 grupos
10)Uma tonelada de cana de açúcar produz aproximadamente 85 litros de álcool. Quantas toneladas de cana são necessárias para produzir 6970 litros de álcool?
R: 82 toneladas
DIVISÃO NÃO EXATA
Nem sempre é possível realizar a divisão exata em N
considerando este exemplo
7 : 2 = 3 sobra 1 que chamamos de resto
Numa divisão, o resto é sempre menor que o divisor
Exemplo
Uma industria produziu 183 peças e quer colocá-las em 12 caixas, de modo que todas as caixas tenham o mesmo número de peças. Quantas peças serão colocadas em cada caixa?
resolução
Para resolver esse problema devemos fazer 183 : 12, tendo como resultado 15 e resto 3.
Como o resto é 3, dizemos que esta é uma divisão com resto ou uma divisão não exata.
Logo na caixa serão colocadas 15 peças, sobrando ainda 3 peças
Consideremos dois números naturais, dados numa certa ordem, 10 é o primeiro deles e 2 é o segundo .
Por meio deles determina-se um terceiro número natural que, multiplicado pelo segundo dá como resultado o primeiro. Essa operação chama-se divisão e é indicada pelo sinal :
Assim,
10:2 = 5 porque 5x2 = 10
Na divisão 10:2=5
dizemos que
10 é o dividendo
2 é o divisor
5 é o resultado ou quociente
EXEMPLO
Um colégio levou 72 alunos numa excursão ao jardim zoológico e para isso repartiu igualmente os alunos em 4 ônibus. Quantos alunos o colégio colocou em cada ônibus?
Para resolver esse problema, devemos fazer uma divisão 72 : 4 = 18 , sendo assim cada ônibus tinha 18 alunos.
EXERCÍCIOS
1) Calcule as divisões
a) 20:5= 4
b) 16:8= 2
c) 12:1= 12
d) 48:8= 6
e) 37:37= 1
f) 56:14= 4
2) Observe a igualdade 56:7=8 e responda:
a) Qual é o nome da operação?
R: divisão
b)Como se chama o número 56?
R: dividendo
c)Como se chama o número 7?
R: divisor
d)como se chama o número 8?
R: Quociente ou resultado
3) Responda
a)Qual é a metade de 784?
R: 392
b)Qual é a terça parte de 144?
R: 48
c)Qual é a quinta parte de 1800?
R: 360
d)Qual é a décima parte de 3500?
R: 350
4)Em um teatro há 126 poltronas distribuídas igualmente em 9 fileiras. Quantas poltronas foram colocadas em cada fileira?
R: 14 poltronas
5)Quantos garrafões de 5 litros são necessários para engarrafar 315 litros de vinho?
R: 63 garrafões
6)Uma pessoa ganha R$ 23,00 por hora de trabalho. Quanto tempo deverá trabalhar para receber R$ 391,00?
R: 17 horas
7)Uma torneira despeja 75 litros de água por hora. Quanto tempo levará para encher uma caixa de 3150 litros ?
(R: 42 horas)
8) Numa pista de atletismo uma volta tem 400 metros. Numa corrida de 10.000 metros, quantas voltas o atleta tem de dar nessa pista?
( R: 25 voltas)
9) Um livro tem 216 páginas. Quero terminar a leitura desse livro em 18 dias, lendo o mesmo número de páginas todos os dias. Quantas páginas preciso ler por dia?
R: 12 paginas
11)Quantos grupos de 18 alunos podem ser formados com 666 alunos?
R: 37 grupos
10)Uma tonelada de cana de açúcar produz aproximadamente 85 litros de álcool. Quantas toneladas de cana são necessárias para produzir 6970 litros de álcool?
R: 82 toneladas
DIVISÃO NÃO EXATA
Nem sempre é possível realizar a divisão exata em N
considerando este exemplo
7 : 2 = 3 sobra 1 que chamamos de resto
Numa divisão, o resto é sempre menor que o divisor
Exemplo
Uma industria produziu 183 peças e quer colocá-las em 12 caixas, de modo que todas as caixas tenham o mesmo número de peças. Quantas peças serão colocadas em cada caixa?
resolução
Para resolver esse problema devemos fazer 183 : 12, tendo como resultado 15 e resto 3.
Como o resto é 3, dizemos que esta é uma divisão com resto ou uma divisão não exata.
Logo na caixa serão colocadas 15 peças, sobrando ainda 3 peças
MULTIPLICAÇÃO DE NÚMEROS NATURAIS
MULTIPLICAÇÃO
A multiplicação é uma adição de parcelas iguais.
veja
3+3+3+3 = 12
Podemos representar a mesma igualdade por
4 x 3 = 12 ou 4 . 3 = 12
Essa operação chama-se multiplicação e é indicada pelo sinal . ou x
Na multiplicação 4 x 3 = 12
dizemos que;
4 e 3 são os fatores
12 é o produto
1º exemplo
Um edifício de apartamentos tem 6 andares. Em cada andar a 4 apartamentos. Quantos apartamentos tem o edifício todo?
Resolução
Para resolver esse problema, podemos fazer
4 + 4 + 4 + 4 + 4 + 4 = 24
Essa mesma igualdade pode ser representada por:
6 x 4 = 24
Logo podemos dizer que o edifício tem 24 apartamentos
2° Exemplo
A fase final do torneio de voleibol da liga nacional é disputado por 4 equipes. Cada equipe pode inscrever 12 jogadores. Quantos jogadores serão inscritos para disputar a fase final desse torneio?
resolução
Para resolver esse problema podemos fazer
12 + 12 + 12 + 12 = 48
Essa mesma igualdade pode ser representada por:
4 x 12 = 48
5) Considerando 1 mês = 30 dias e 1 ano = 365 dias, uma semana = 7 dias, determine:
a) quantos dias há em 15 semanas completas.
(R: 105 dias)
b) Quantos dias há em 72 meses completos.
(R: 2160 dias)
c) Quantos dias há em 8 anos completos.
(R: 2920 dias)
1) Para uma demonstração de ginástica, um professor de Educação Fisíca prepara 64 grupos de alunos. Cada grupo é formado por 25 alunos. Quantos alunos devem participar dessa demonstração?
R: 1600
2) Com 12 prestações mensais iguais de 325 reais posso comprar uma moto. Quanto vou pagar por essa moto?
R: 3900 reais
3) Qual é o número natural que você vai obter quando multiplicar 736 por 208?
R: 153.088
4) Para cobrir o piso de um barracão foram colocados 352 placas de 35 metros quadrados cada uma. Quantos metros quadrados tem o piso desse barracão?
R: 12320 metros quadrados
5) Um carro bem regulado percorre 12 quilômetros com um litro de gasolina. Se numa viagem foram consumidos 46 litro, qual a distância em quilômetros que o carro percorreu?
R: 552 quilômetros
6) Em um teatro há 18 fileiras de poltronas. Em cada fileira foram colocadas 26 poltronas. Quantas poltronas há nesse teatro?
R: 468 poltronas
.
7) Em uma multiplicação, os fatores são 134 e 296. Qual o produto?
R: 39.664
8) Numa mercearia há 7 caixas de bombons e cada caixa contém 3 dúzias de bombons. Quantos bombons há na mercearia?
R: 252
9) Uma pessoa deu R$ 4.700,00 de entrada na compra de um objeto e pagou mais 6 prestações de R$ 2.300,00. Quanto custou o objeto?
R: 18.500
10) Um motorista percorreu 749 km em 6 dias. Nos cinco primeiros dias andou 132 km por dia. Quanto percorreu no 6º dia ?
R: 89
PROPRIEDADES ESTRUTURAIS DA MULTIPLICAÇÃO
1) FECHAMENTO
O produto de dois números naturais é um número natural
5 x 3 = 15
2) COMUTATIVA
A ordem dos fatores não altera o produto.
2 x 7 = 14
7 x 2 = 14
assim: 2 x 7 = 7 x 2
3) ELEMENTO NEUTRO
O número 1 na multiplicação é um número neutro
5 x 1 = 5
1 x 5 = 5
4) ASSOCIATIVA
A multiplicação de três números naturais pode ser feita associando-se os dois primeiros ou os dois últimos fatores
(3 x 4 ) x 5 = 12 x 5 = 60
3 x ( 4 x 5 ) = 3 x 20 = 60
5) DISTRIBUTIVA DA MULTIPLICAÇÃO EM RELAÇÃO A ADIÇÃO
Na multiplicação de uma soma por um número natural, multiplica-se cada um dos termos por esse número .
veja:
1) 2 x (5+3) = 2 x 8 = 16
2) 2 x 5 + 2 x 3 = 10 + 6 = 16
A multiplicação é uma adição de parcelas iguais.
veja
3+3+3+3 = 12
Podemos representar a mesma igualdade por
4 x 3 = 12 ou 4 . 3 = 12
Essa operação chama-se multiplicação e é indicada pelo sinal . ou x
Na multiplicação 4 x 3 = 12
dizemos que;
4 e 3 são os fatores
12 é o produto
1º exemplo
Um edifício de apartamentos tem 6 andares. Em cada andar a 4 apartamentos. Quantos apartamentos tem o edifício todo?
Resolução
Para resolver esse problema, podemos fazer
4 + 4 + 4 + 4 + 4 + 4 = 24
Essa mesma igualdade pode ser representada por:
6 x 4 = 24
Logo podemos dizer que o edifício tem 24 apartamentos
2° Exemplo
A fase final do torneio de voleibol da liga nacional é disputado por 4 equipes. Cada equipe pode inscrever 12 jogadores. Quantos jogadores serão inscritos para disputar a fase final desse torneio?
resolução
Para resolver esse problema podemos fazer
12 + 12 + 12 + 12 = 48
Essa mesma igualdade pode ser representada por:
4 x 12 = 48
5) Considerando 1 mês = 30 dias e 1 ano = 365 dias, uma semana = 7 dias, determine:
a) quantos dias há em 15 semanas completas.
(R: 105 dias)
b) Quantos dias há em 72 meses completos.
(R: 2160 dias)
c) Quantos dias há em 8 anos completos.
(R: 2920 dias)
1) Para uma demonstração de ginástica, um professor de Educação Fisíca prepara 64 grupos de alunos. Cada grupo é formado por 25 alunos. Quantos alunos devem participar dessa demonstração?
R: 1600
2) Com 12 prestações mensais iguais de 325 reais posso comprar uma moto. Quanto vou pagar por essa moto?
R: 3900 reais
3) Qual é o número natural que você vai obter quando multiplicar 736 por 208?
R: 153.088
4) Para cobrir o piso de um barracão foram colocados 352 placas de 35 metros quadrados cada uma. Quantos metros quadrados tem o piso desse barracão?
R: 12320 metros quadrados
5) Um carro bem regulado percorre 12 quilômetros com um litro de gasolina. Se numa viagem foram consumidos 46 litro, qual a distância em quilômetros que o carro percorreu?
R: 552 quilômetros
6) Em um teatro há 18 fileiras de poltronas. Em cada fileira foram colocadas 26 poltronas. Quantas poltronas há nesse teatro?
R: 468 poltronas
.
7) Em uma multiplicação, os fatores são 134 e 296. Qual o produto?
R: 39.664
8) Numa mercearia há 7 caixas de bombons e cada caixa contém 3 dúzias de bombons. Quantos bombons há na mercearia?
R: 252
9) Uma pessoa deu R$ 4.700,00 de entrada na compra de um objeto e pagou mais 6 prestações de R$ 2.300,00. Quanto custou o objeto?
R: 18.500
10) Um motorista percorreu 749 km em 6 dias. Nos cinco primeiros dias andou 132 km por dia. Quanto percorreu no 6º dia ?
R: 89
PROPRIEDADES ESTRUTURAIS DA MULTIPLICAÇÃO
1) FECHAMENTO
O produto de dois números naturais é um número natural
5 x 3 = 15
2) COMUTATIVA
A ordem dos fatores não altera o produto.
2 x 7 = 14
7 x 2 = 14
assim: 2 x 7 = 7 x 2
3) ELEMENTO NEUTRO
O número 1 na multiplicação é um número neutro
5 x 1 = 5
1 x 5 = 5
4) ASSOCIATIVA
A multiplicação de três números naturais pode ser feita associando-se os dois primeiros ou os dois últimos fatores
(3 x 4 ) x 5 = 12 x 5 = 60
3 x ( 4 x 5 ) = 3 x 20 = 60
5) DISTRIBUTIVA DA MULTIPLICAÇÃO EM RELAÇÃO A ADIÇÃO
Na multiplicação de uma soma por um número natural, multiplica-se cada um dos termos por esse número .
veja:
1) 2 x (5+3) = 2 x 8 = 16
2) 2 x 5 + 2 x 3 = 10 + 6 = 16
SUBTRAÇÃO DE NÚMEROS NATURAIS
SUBTRAÇÃO
Na matemática, a operação da subtração é empregada quando devemos tirar uma quantidade de outra quantidade.
veja o exemplo
O estádio do Pacaembu, na cidade de São Paulo, tem capacidade para 40.000 pessoas. È também na cidade de São Paulo que se encontra o estádio do Morumbi que tem capacidade para 138.000 pessoas.
Para se ter uma idéia do tamanho do Morumbi, se colocarmos nele 40.000 ainda sobrarão muitos lugares. Quanto sobrarão?
Dos 138.000 lugares devemos tirar os 40.000 assim
138.000 - 40.000 = 98.000
sobrarão 98.000 lugares.
Subtrair significa tirar,diminuir.
Na subtração anterior, o número 138.000 é chamado minuendo e 40.000 é o subtraendo, o resultado, 98.000, é chamado diferença ou resto.
1)Dom Pedro II, imperador do Brasil, faleceu em 1891 com 66 anos de idade. Em que ano ele nasceu?
R: 1825
2) Um avião Boeing 747 pode transportar 370 passageiros e um avião DC-10 pode transportar 285 passageiros. Quantos passageiros o Boeing 747 pode transportar a mais que o DC10?
(R: 85 passageiros)
3) À vista um automóvel custa 26.454 reais. À prazo o mesmo automóvel custa 38.392 reais. A diferença entre o preço cobrado é chamado de juros. Qual é a quantia que pagará de juros?
(R: 11.938)
4) Um avião pode transportar 295 passageiros. Em determinado vôo, o avião está transportando 209 passageiros. Quantas poltronas desse avião não estão ocupadas?
(R: 86 )
5) Se Antonio tem 518 selos e Pedro tem 702 selos, Quantos selos Pedro tem a mais que Antonio?
(R: 184 )
6) Ézio tem 95 reais e quer comprar uma máquina fotográfica que custa 130 reais. Quantos reais faltam para ele comprar a máquina?
(R: 35)
7)De acordo com o Censo de 1980, a população de uma cidade era de 79.412 habitantes. Feito o Censo em 1991, verificou-se que a população dessa cidade passou a ser de 94.070 habitantes. Qual foi o aumento da população dessa cidade nesse período de tempo?
(R: 14.658)
8)Uma industria, no final de 1991, tinha 10.635 empregados. No inicio de 1992 em virtude da crise econômica dispensou 1.880 funcionários. Com quantos funcionários a indústria ficou?
(R: 8.755)
9) Qual a diferença entre 10.000 e 5.995?
(R: 4005 )
10) Quantas unidades faltam a 499 para atingir 1 unidade de milhar?
(R: 501)
11) Efetue:
a) 2620 - 945 = (R: 1.675)
b) 7000 - 1096 = (R: 5904)
c) 11011 - 7997 = (R: 3014)
d) 140926 - 78016 = ( R: 62910)
12) Considere os números 645 e 335. Nessas condições:
a) Determine a diferença entre eles
R: 310
b) Adicione 5 unidades ao primeiro número e 5 unidades ao segundo número e calcule a diferença entre os novos números que você obteve.
R: 650,340, 310
Na matemática, a operação da subtração é empregada quando devemos tirar uma quantidade de outra quantidade.
veja o exemplo
O estádio do Pacaembu, na cidade de São Paulo, tem capacidade para 40.000 pessoas. È também na cidade de São Paulo que se encontra o estádio do Morumbi que tem capacidade para 138.000 pessoas.
Para se ter uma idéia do tamanho do Morumbi, se colocarmos nele 40.000 ainda sobrarão muitos lugares. Quanto sobrarão?
Dos 138.000 lugares devemos tirar os 40.000 assim
138.000 - 40.000 = 98.000
sobrarão 98.000 lugares.
Subtrair significa tirar,diminuir.
Na subtração anterior, o número 138.000 é chamado minuendo e 40.000 é o subtraendo, o resultado, 98.000, é chamado diferença ou resto.
1)Dom Pedro II, imperador do Brasil, faleceu em 1891 com 66 anos de idade. Em que ano ele nasceu?
R: 1825
2) Um avião Boeing 747 pode transportar 370 passageiros e um avião DC-10 pode transportar 285 passageiros. Quantos passageiros o Boeing 747 pode transportar a mais que o DC10?
(R: 85 passageiros)
3) À vista um automóvel custa 26.454 reais. À prazo o mesmo automóvel custa 38.392 reais. A diferença entre o preço cobrado é chamado de juros. Qual é a quantia que pagará de juros?
(R: 11.938)
4) Um avião pode transportar 295 passageiros. Em determinado vôo, o avião está transportando 209 passageiros. Quantas poltronas desse avião não estão ocupadas?
(R: 86 )
5) Se Antonio tem 518 selos e Pedro tem 702 selos, Quantos selos Pedro tem a mais que Antonio?
(R: 184 )
6) Ézio tem 95 reais e quer comprar uma máquina fotográfica que custa 130 reais. Quantos reais faltam para ele comprar a máquina?
(R: 35)
7)De acordo com o Censo de 1980, a população de uma cidade era de 79.412 habitantes. Feito o Censo em 1991, verificou-se que a população dessa cidade passou a ser de 94.070 habitantes. Qual foi o aumento da população dessa cidade nesse período de tempo?
(R: 14.658)
8)Uma industria, no final de 1991, tinha 10.635 empregados. No inicio de 1992 em virtude da crise econômica dispensou 1.880 funcionários. Com quantos funcionários a indústria ficou?
(R: 8.755)
9) Qual a diferença entre 10.000 e 5.995?
(R: 4005 )
10) Quantas unidades faltam a 499 para atingir 1 unidade de milhar?
(R: 501)
11) Efetue:
a) 2620 - 945 = (R: 1.675)
b) 7000 - 1096 = (R: 5904)
c) 11011 - 7997 = (R: 3014)
d) 140926 - 78016 = ( R: 62910)
12) Considere os números 645 e 335. Nessas condições:
a) Determine a diferença entre eles
R: 310
b) Adicione 5 unidades ao primeiro número e 5 unidades ao segundo número e calcule a diferença entre os novos números que você obteve.
R: 650,340, 310
ADIÇÃO DE NÚMEROS NATURAIS
ADIÇÃO
juntando, quanto dá?
A professora de língua Portuguesa indicou aos alunos de 5° série os livros que eles deverão ler no primeiro bimestre do ano letivo, o primeiro tem 64 páginas e o segundo têm 72 páginas. Nesses dois livros, quantas páginas, ao todo, os alunos vão ler?
Devemos contar as 72 páginas de um livro mais as 64 páginas do outro. Partindo de 72 e contando mais 64 vemos chegar ao resultado. Essa contagem é demorada, não é? Por isso, você aprendeu a fazer esta conta:
72 + 64 = 136
ou
72
+ 64
----
136
Adicionar significa somar, juntar , ajuntar, acrescentar. No exemplo acima, os números 72 e 64 são parcelas da adição. O resultado, 136, é chamado soma. Veja outro exemplo:
600 + 280= 880—soma
parcelas
Vamos somar os números 272 e 339 em duas ordens diferentes calcule e compare os resultados
a) 272 + 339
b) 339 + 272
Na matemática, a operação da adição é usada quando devemos juntar duas ou mais quantidades. Consideremos, então, as seguintes situações em que vamos empregar a operação de adição
1º EXEMPLO
Uma empresa tem 1748 pessoas trabalhando na sua fábrica e 566 pessoas trabalhando no seu escritório. Quantas pessoas trabalham, ao todo, nessa empresa?
Resolução
Para resolver esse problema, devemos fazer 1748 + 566, ou seja
1748---parcela
+566---parcela
----
2314---soma ou total (resultado da operação)
logo, podemos dizer que nessa empresa trabalham 2314 pessoas
2º EXEMPLO
Em uma escola, o início das aulas é às 7h 30min. Como cada aula tem 50 minutos de duração, a que horas termina a primeira aula?
Resolução
Para resolver esse problema, devemos fazer 7h 30min + 50 min, ou seja
7h 30 min----parcela
+ 50 min----parcela
---------
7h 80 min----soma ou total
Como 1 hora tem 60 minutos, então 80 minutos correspondem a 1h 20 min. Então 7h 80 min = 7 h + 1h 20 min = 8 h 20 min
logo, podemos dizer que a primeira aula termina às 8 h 20 min
3º EXEMPLO
Durante o ano de 2008, uma equipe de futebol venceu 49 partidas, empatou 18 partidas e perdeu 5 partidas. Quantas partidas essa equipe disputou durante o ano de 2008?
Resolução
Para resolver o Problema, devemos calcular 49 + 18 + 5, ou seja :
49---parcelas
18---parcelas
+5---parcelas
--
72---soma ou total
Logo, podemos dizer que essa equipe disputou 72 partidas
1) Determine a soma do número 273 com o seu sucessor
R: 547
2) Um objeto custa R$ 415.720,00. O comprador terá ainda R$ 28.912,00 de despesa de frete. Quanto o comprador vai pagar?
R: 444632
3) Ao receber o meu salário paguei R$ 437,12 de aluguel, R$ 68,14 de impostos. R$ 1.089,67 de gastos com alimentação e ainda me sobraram R$ 749,18. Quanto recebi de salário?
R: 2344,11
4) Um menino estuda 2 horas e 45 minutos pela manhã e 4 horas e 30 minutos à tarde. Quantos minutos estuda diariamente?
R: 435 min
5) Um automóvel passou pelo quilômetro 435 de uma rodovia. Ele ainda deverá percorrer 298 quilômetros até chegar ao seu destino. Quantos quilômetros da estrada vai percorrer para chegar ao destino?
R: 733
6) Em 1990 o Brasil vendeu para o exterior 283.356 veículos e, em 1991, essa venda foi de 345.760 veículos. Quantos veículos o Brasil vendeu para o exterior nesses dois anos?
R: 629.116
7) Uma empresa tem sede em São Paulo e filiais em outros estados. Na sede trabalham 316 pessoas e nas filiais 1098 pessoas. Quantas pessoas trabalham nessa empresa?
R: 1.414
8) Em um condomínio, há 675 lotes já vendidos e 1095 lotes para vender. Quantos lotes de terreno há nesse condomínio?
R: 1770
9) Uma escola funciona em dois turnos. No turno matutino há 1407 alunos e no turno vespertino há 1825 alunos. Quantos alunos estudam nessa escola?
R: 3232
10) Uma empresa produziu no primeiro trimestre 6905 peças. no segundo trimestre, a mesma empresa produziu 795 peças a mais que no primeiro trimestre. Nessas condições:
a) Quantas peças a empresa produziu no segundo trimestre?
R: 7700
b) Quantas peças a empresa produziu no semestre?
R: 14605
11) Nei comprou um aparelho de som por 635 reais e as caixas de som por 128 reais. Tendo pago 12 reais pela instalação, qual a quantia que ele gastou ?
R: 775
12) De acordo com o censo realizado em 1991, o estado da Paraíba tem 1.546.042 homens e 1.654.578 mulheres. Qual é a população da Paraíba segundo esse censo?
R: 3.200.620
13) Calcule:
a) 1705 + 395 = 2100
b) 11.048 + 9.881 = 20929
c) 4.907 + 62.103 = 67010
d) 275.103 + 94.924 = 370027
e) 545 + 2.298 + 99 = 2.942
f) 7.502 + 209.169 + 38.425 = 255.096
PROPRIEDADES DA ADIÇÃO DE NÚMEROS NATURAIS
Vamos observar a seguinte situações:
1º) consideremos os números naturais 40 e 24 e vamos determinar a sua soma ?
40 + 24 = 64
trocando a ordem dos números, vamos determinar a sua soma
24 + 40 = 64
De acordo com as situações apresentadas, podemos escrever
40 + 24 = 24 + 40
Esse fato sempre vai ocorrer quando consideremos dois números naturais Daí concluímos
Numa adição de dois números naturais, a ordem das parcelas não altera a soma. Essa propriedade é chamada PROPRIEDADE COMUTATIVA DA ADIÇÃO
2º) Consideremos os números naturais 16,20 e 35 e vamos determinar a sua soma:
16 + 20 + 35
=36 + 35
=71
16 + 20 + 35
= 16 + 55=
=71
De acordo com as situações apresentadas, temos
(16 + 20) + 35 = 16 + (20 + 35)
Esse fato se repete quando consideramos três números naturais quaisquer Então: Numa adição de três ou mais números naturais quaisquer, podemos associar as parcelas de modo diferentes. Essa propriedade é chamada PROPRIEDADE ASSOCIATIVA DA ADIÇÃO
3º) Consideremos os números naturais 15 e 0 e vamos determinar a sua soma, independentemente da ordem dos números:
15 + 0 = 15
0 + 15 = 15
Você nota que o número o não influi no resultado da adição.
Então Numa adição de um número natural com zero a soma é sempre igual a esse número natural.
Nessas condições, o numero zero é chamado ELEMENTO NEUTRO DA ADIÇÃO.
juntando, quanto dá?
A professora de língua Portuguesa indicou aos alunos de 5° série os livros que eles deverão ler no primeiro bimestre do ano letivo, o primeiro tem 64 páginas e o segundo têm 72 páginas. Nesses dois livros, quantas páginas, ao todo, os alunos vão ler?
Devemos contar as 72 páginas de um livro mais as 64 páginas do outro. Partindo de 72 e contando mais 64 vemos chegar ao resultado. Essa contagem é demorada, não é? Por isso, você aprendeu a fazer esta conta:
72 + 64 = 136
ou
72
+ 64
----
136
Adicionar significa somar, juntar , ajuntar, acrescentar. No exemplo acima, os números 72 e 64 são parcelas da adição. O resultado, 136, é chamado soma. Veja outro exemplo:
600 + 280= 880—soma
parcelas
Vamos somar os números 272 e 339 em duas ordens diferentes calcule e compare os resultados
a) 272 + 339
b) 339 + 272
Na matemática, a operação da adição é usada quando devemos juntar duas ou mais quantidades. Consideremos, então, as seguintes situações em que vamos empregar a operação de adição
1º EXEMPLO
Uma empresa tem 1748 pessoas trabalhando na sua fábrica e 566 pessoas trabalhando no seu escritório. Quantas pessoas trabalham, ao todo, nessa empresa?
Resolução
Para resolver esse problema, devemos fazer 1748 + 566, ou seja
1748---parcela
+566---parcela
----
2314---soma ou total (resultado da operação)
logo, podemos dizer que nessa empresa trabalham 2314 pessoas
2º EXEMPLO
Em uma escola, o início das aulas é às 7h 30min. Como cada aula tem 50 minutos de duração, a que horas termina a primeira aula?
Resolução
Para resolver esse problema, devemos fazer 7h 30min + 50 min, ou seja
7h 30 min----parcela
+ 50 min----parcela
---------
7h 80 min----soma ou total
Como 1 hora tem 60 minutos, então 80 minutos correspondem a 1h 20 min. Então 7h 80 min = 7 h + 1h 20 min = 8 h 20 min
logo, podemos dizer que a primeira aula termina às 8 h 20 min
3º EXEMPLO
Durante o ano de 2008, uma equipe de futebol venceu 49 partidas, empatou 18 partidas e perdeu 5 partidas. Quantas partidas essa equipe disputou durante o ano de 2008?
Resolução
Para resolver o Problema, devemos calcular 49 + 18 + 5, ou seja :
49---parcelas
18---parcelas
+5---parcelas
--
72---soma ou total
Logo, podemos dizer que essa equipe disputou 72 partidas
1) Determine a soma do número 273 com o seu sucessor
R: 547
2) Um objeto custa R$ 415.720,00. O comprador terá ainda R$ 28.912,00 de despesa de frete. Quanto o comprador vai pagar?
R: 444632
3) Ao receber o meu salário paguei R$ 437,12 de aluguel, R$ 68,14 de impostos. R$ 1.089,67 de gastos com alimentação e ainda me sobraram R$ 749,18. Quanto recebi de salário?
R: 2344,11
4) Um menino estuda 2 horas e 45 minutos pela manhã e 4 horas e 30 minutos à tarde. Quantos minutos estuda diariamente?
R: 435 min
5) Um automóvel passou pelo quilômetro 435 de uma rodovia. Ele ainda deverá percorrer 298 quilômetros até chegar ao seu destino. Quantos quilômetros da estrada vai percorrer para chegar ao destino?
R: 733
6) Em 1990 o Brasil vendeu para o exterior 283.356 veículos e, em 1991, essa venda foi de 345.760 veículos. Quantos veículos o Brasil vendeu para o exterior nesses dois anos?
R: 629.116
7) Uma empresa tem sede em São Paulo e filiais em outros estados. Na sede trabalham 316 pessoas e nas filiais 1098 pessoas. Quantas pessoas trabalham nessa empresa?
R: 1.414
8) Em um condomínio, há 675 lotes já vendidos e 1095 lotes para vender. Quantos lotes de terreno há nesse condomínio?
R: 1770
9) Uma escola funciona em dois turnos. No turno matutino há 1407 alunos e no turno vespertino há 1825 alunos. Quantos alunos estudam nessa escola?
R: 3232
10) Uma empresa produziu no primeiro trimestre 6905 peças. no segundo trimestre, a mesma empresa produziu 795 peças a mais que no primeiro trimestre. Nessas condições:
a) Quantas peças a empresa produziu no segundo trimestre?
R: 7700
b) Quantas peças a empresa produziu no semestre?
R: 14605
11) Nei comprou um aparelho de som por 635 reais e as caixas de som por 128 reais. Tendo pago 12 reais pela instalação, qual a quantia que ele gastou ?
R: 775
12) De acordo com o censo realizado em 1991, o estado da Paraíba tem 1.546.042 homens e 1.654.578 mulheres. Qual é a população da Paraíba segundo esse censo?
R: 3.200.620
13) Calcule:
a) 1705 + 395 = 2100
b) 11.048 + 9.881 = 20929
c) 4.907 + 62.103 = 67010
d) 275.103 + 94.924 = 370027
e) 545 + 2.298 + 99 = 2.942
f) 7.502 + 209.169 + 38.425 = 255.096
PROPRIEDADES DA ADIÇÃO DE NÚMEROS NATURAIS
Vamos observar a seguinte situações:
1º) consideremos os números naturais 40 e 24 e vamos determinar a sua soma ?
40 + 24 = 64
trocando a ordem dos números, vamos determinar a sua soma
24 + 40 = 64
De acordo com as situações apresentadas, podemos escrever
40 + 24 = 24 + 40
Esse fato sempre vai ocorrer quando consideremos dois números naturais Daí concluímos
Numa adição de dois números naturais, a ordem das parcelas não altera a soma. Essa propriedade é chamada PROPRIEDADE COMUTATIVA DA ADIÇÃO
2º) Consideremos os números naturais 16,20 e 35 e vamos determinar a sua soma:
16 + 20 + 35
=36 + 35
=71
16 + 20 + 35
= 16 + 55=
=71
De acordo com as situações apresentadas, temos
(16 + 20) + 35 = 16 + (20 + 35)
Esse fato se repete quando consideramos três números naturais quaisquer Então: Numa adição de três ou mais números naturais quaisquer, podemos associar as parcelas de modo diferentes. Essa propriedade é chamada PROPRIEDADE ASSOCIATIVA DA ADIÇÃO
3º) Consideremos os números naturais 15 e 0 e vamos determinar a sua soma, independentemente da ordem dos números:
15 + 0 = 15
0 + 15 = 15
Você nota que o número o não influi no resultado da adição.
Então Numa adição de um número natural com zero a soma é sempre igual a esse número natural.
Nessas condições, o numero zero é chamado ELEMENTO NEUTRO DA ADIÇÃO.
Assinar:
Postagens (Atom)