Retém a instrução e não a largues. guarda-a, porque ela é a tua vida. (Pv. 4:13)

Retém a instrução e não a largues. Guarda-a, porque ela é a tua vida. (Pv. 4:13)

9 de fevereiro de 2010

NOTAÇÃO CIÊNTÍFICA

Notação científica, também conhecida como padrão ou como notação em forma exponencial, é uma forma de escrever números que acomoda valores demasiado grandes (100000000000) ou pequenos (0,00000000001) para serem convenientemente escritos em forma convencional. O uso desta notação está baseado nas potências de 104 (os casos exemplificados acima, em notação científica, ficariam: 1 × 1011 e 1 × 10−11, respectivamente). Como exemplo, na química, ao se referir à quantidade de entidades elementares (átomos, moléculas, íons, etc), há a grandeza denominada quantidade de matéria (mol).

Um número escrito em notação científica segue o seguinte modelo:

\mathbf{m}\ \times\ 10^{\mathbf{e}}

VOCÊ SABE QUEM FOI EUCLIDES O MATEMÁTICO?




Euclides de Alexandria (360 a.C.295 a.C.) foi um professor, matemático platónico e escritor de origem desconhecida, criador da famosa geometria euclidiana: o espaço euclidiano, imutável, simétrico e geométrico, metáfora do saber na antiguidade clássica, que se manteve incólume no pensamento matemático medieval e renascentista, pois somente nos tempos modernos puderam ser construídos modelos de geometrias não-euclidianas. Teria sido educado em Atenas e freqüentado a Academia de Platão, em pleno florescimento da cultura helenística.

Convidado por Ptolomeu I para compor o quadro de professores da recém fundada Academia, que tornaria Alexandria no centro do saber da época, tornou-se o mais importante autor de matemática da Antiguidade greco-romana e talvez de todos os tempos, com seu monumental Stoichia (Os elementos, 300 a.C.), no estilo livro de texto, uma obra em treze volumes, sendo cinco sobre geometria plana, três sobre números, um sobre a teoria das proporções, um sobre incomensuráveis e os três últimos sobre geometria no espaço. Escrita em grego, a obra cobria toda a aritmética, a álgebra e a geometria conhecidas até então no mundo grego, reunindo o trabalho de seus predecessores, como Hipócrates e Eudóxio, e sistematizava todo o conhecimento geométrico dos antigos e intercalava os teoremas já conhecidos então com a demonstração de muitos outros, que completavam lacunas e davam coerência e encadeamento lógico ao sistema por ele criado. Após sua primeira edição foi copiado e recopiado inúmeras vezes e, vertido para o árabe (774), tornou-se o mais influente texto científico de todos os tempos e um dos com maior número de publicações ao longo da história. Depois da queda do Império Romano, os seus livros foram recuperados para a sociedade européia pelos estudiosos muçulmanos da península Ibérica. Escreveu ainda Óptica (295 a.C.), sobre a óptica da visão e sobre astrologia, astronomia, música e mecânica, além de outros livros sobre matemática. Entre eles citam-se Lugares de superfície, Pseudaria, Porismas e mais algumas outras.

Algumas das suas obras como Os elementos, Os dados, outro livro de texto, uma espécie de manual de tabelas de uso interno na Academia e complemento dos seis primeiros volumes de Os Elementos, Divisão de figuras, sobre a divisão geométrica de figuras planas, Os Fenômenos, sobre astronomia, e Óptica, sobre a visão, sobreviveram parcialmente e hoje são, depois de A Esfera de Autólico, os mais antigos tratados científicos gregos existentes. Pela sua maneira de expor nos escritos deduz-se que tenha sido um habilíssimo professor.

MÓDULO OU VALOR ABSOLUTO

Calculando o módulo

Considere a reta real

Página 3

Chamamos a distância de um ponto da reta à origem (distância do ponto até o zero) de módulo ou valor absoluto.

Assim, a distância do ponto 4 à origem é 4. Dizemos que o módulo de 4 é igual a 4. E representamos

│4│ = 4

Da mesma forma, a distância do ponto -2 à origem é 2, ou seja, o módulo de -2 é 2, pois não há muito sentido em considerarmos distâncias negativas. Assim:

│-2│ = 2

Outros exemplos:

│3│ = 3

│-7│ = 7

│0│ = 0

│-1│ = 1

│6 + 5│= │11│= 11

│6│+│5│= 6 + 5 = 11

│6 + 5│=│6│+│5│
│-5 + 1│= │-4│= 4

NÚMERO OPOSTO OU SIMÉTRICO

Todo número inteiro exceto o zero, possui um elemento denominado simétrico ou oposto -z e ele é caracterizado pelo fato geométrico que tanto z como -z estão à mesma distância da origem do conjunto Z que é 0.

Exemplos:

(a) O oposto de ganhar é perder, logo o oposto de +3 é -3.
(b) O oposto de perder é ganhar, logo o oposto de -5 é +5.

O NÚMERO PI

O NÚMERO PI
É UM NÚMERO IRRACIONAL OBTIDO ATRAVÉS DA DIVISÃO ENTRE O COMPRIMENTO DE UMA CIRCUNFERÊNCIA PELO SEU DIÂMETRO.

O valor de π, portanto, seria 3,1416. Obviamente, quanto maior o número de casas decimais, melhor a aproximação do valor real de pi. Mas devemos considerar que, na época, isso não era algo fácil de se calcular.

O maior cálculo de casas decimais até o século xv foi 3,1415926535897932 feito pelo matemático árabe al-Kashi. O matemático holandês Ludolph van Ceulen, no final do século XVI, calculou um valor de π com 35 casas decimais, começando com um polígono de 15 lados, dobrando o número de lados 37 vezes, e, logo em seguida, aumentando o número de lados. Por curiosidade, a sua esposa mandou gravar no seu túmulo o valor de π com as supracitadas 35 casas decimais.


6 de fevereiro de 2010

NÚMEROS INTEIROS


OS NÚMEROS INTEIROS

Os números inteiros são constituídos dos números naturais {0, 1, 2, ...} e dos seus simétricos {0, -1, -2, ...}. Dois números são opostos se, e somente se, sua soma é zero. Por vezes, no ensino pré-universitário, chamam-se a estes números inteiros relativos.

O conjunto de todos os inteiros é denominado por Z (Mais apropriadamente, um Z em blackboard bold, \mathbb{Z}), que vem do alemão Zahlen, que significa números, algarismos.

Os resultados das operações de soma, subtração e multiplicação entre dois Inteiros são inteiros. Dois inteiros admitem relações binárias como =, > e <.

Matemáticos expressam o facto de que todas as leis usuais da aritmética são válidas nos inteiros dizendo que (Z, +, *) é um anel comutativo.

A ordem de Z é dada por ... < -2 < -1 < href="http://pt.wikipedia.org/wiki/Ordena%C3%A7%C3%A3o_total" title="Ordenação total" class="mw-redirect">ordenação total sem limite superior ou inferior. Chama-se de inteiro positivo os inteiros maiores que zero ; o próprio zero não é considerado um positivo. A ordem é compatível com as operações algébricas no seguinte sentido:

  1. se a < b e c < d, então a + c < b + d
  2. se a < b e 0 < c, então ac < bc

Como os números naturais, os inteiros formam um conjunto infinito contável.

Os inteiros não formam um corpo já que, por exemplo, não existe um inteiro x tal que 2x = 1. O menor corpo que contém os inteiros são os números racionais.

Uma importante propriedade dos inteiros é a divisão com resto: dados dois inteiros a e b com b≠0, podemos sempre achar inteiros q e r tais que:a = b q + r e tal que 0 <= r < |b| (veja módulo ou valor absoluto). q é chamado o quociente e r o resto da divisão de a por b. Os números q e r são unicamente determinados por a e b. Esta divisão torna possível o Algoritmo Euclidiano para calcular o máximo divisor comum, que também mostra que o máximo divisor comum de dois inteiros pode ser escrito como a soma de múltiplos destes dois inteiros.

Tudo isto pode ser resumido dizendo que Z é um domínio euclidiano. Isto implica que Z é um domínio de ideal principal e que todo número inteiro podem ser escrito como produto de números primos de forma única (desde que o 1 não seja considerado primo).

Este é o Teorema Fundamental da Aritmética.

O ramo da matemática que estuda os inteiros é chamado de teoria dos números.

Aplicação

Inteiro é frequentemente um tipo primitivo em linguagem de programação normalmente com 1, 2, 4, ou 8 bytes de comprimento (8, 16, 32, ou 64 bits). Observe, porem que um computador pode apenas representar um subconjunto dos inteiros com estes tipos, já que os inteiros são infinitos e uma quantidade de bits fixa limita a representação a um máximo de 2 à potência do número de bits (28 para bytes, 232 para 32-bit arquitecturas, etc). No entanto, o uso de técnicas de Inteligência Artificial permitem que computadores representem e raciocinem sobre o conjunto dos inteiros.

HISTÓRIA DOS NÚMEROS


História dos Números

A história dos números naturais e o estado do zero
Os números naturais tiveram suas origens nas palavras utilizadas para a contagem de objetos, começando com o número dois, e daí por diante. Uma abstração seguinte foi identificar o número um.[1]

O avanço seguinte na abstração foi o uso de numerais para representar os números. Isto permitiu o desenvolvimento de sistemas para o armazenamento de grandes números. Por exemplo, os babilônicos desenvolveram um poderoso sistema de atribuição de valor baseado essencialmente nos numerais de 1 a 10. Os egípcios antigos possuiam um sistema de numerais com hieróglifos distintos para 1, 10, e todas as potências de 10 até um milhão. Uma gravação em pedra encontrada em Karnak, datando de cerca de 1500 a.C. e atualmente no Louvre, em Paris, representa 276 como 2 centenas, 7 dezenas e 6 unidades; e uma representação similar para o número 4 622.

Um avanço muito posterior na abstração foi o desenvolvimento da idéia do zero como um número com seu próprio numeral. Um dígito zero tem sido utilizado como notação de posição desde cerca de 700 a.C. pelos babilônicos, porém ele nunca foi utilizado como elemento final.1 Os Olmecas e a civilização maia utilizaram o zero como um número separado desde o século I a. C., aparentemente desenvolvido independentemente, porém seu uso não se difundiu na Mesoamérica. O conceito da forma como ele é utilizado atualmente se originou com o matemático indiano Brahmagupta em 628. Contudo, o zero foi utilizado como um número por todos os computus (calculadoras da idade média) começando com Dionysius Exiguus em 525, porém no geral nenhum numeral romano foi utilizado para escrevê-lo. Ao invés disto, a palavra latina para "nenhum", "nullae", foi empregada.

O primeiro estudo esquemático dos números como abstração (ou seja, como entidades abstratas) é comummente atribuído aos filósofos gregos Pitágoras e Arquimedes. Entretanto, estudos independentes também ocorreram por volta do mesmo período na Índia, China, e Mesoamérica.

No século XIX, uma definição do conjunto teórico dos números naturais foi desenvolvida. Com esta definição, era mais conveniente incluir o zero (correspondente ao conjunto vazio) como um número natural. Esta convenção é seguida pelos teorizadores de conjuntos, logicistas, e cientistas da computação. Outros matemáticos, principalmente os teorizadores dos números, comumente preferem seguir a tradição antiga e excluir o zero dos números naturais.

Uma construção consistente do Conjunto dos Números Naturais foi desenvolvida no século XIX por Giuseppe Peano. Essa construção, comumente chamada de Axiomas de Peano, é uma estrutura simples e elegante, servindo como um bom exemplo, de construção de conjuntos numéricos.