Retém a instrução e não a largues. guarda-a, porque ela é a tua vida. (Pv. 4:13)

Retém a instrução e não a largues. Guarda-a, porque ela é a tua vida. (Pv. 4:13)

4 de maio de 2011

7ª SÉRIE

Adição e Subtração de monômios

 Para iniciarmos as operações devemos saber o que são termos semelhantes.
Dizemos que um termo é semelhante do outro quando suas partes literais são idênticas. Veja:

5x2 e 42x são dois termos, as suas partes literais são x2 e x, as letras são iguais, mas o expoente não, então esses termos não são semelhantes.

7ab2 e 20ab2 são dois termos, suas partes literais são ab2 e ab2, observamos que elas são idênticas, então podemos dizer que são semelhantes.


►Adição e subtração de monômios

Só podemos efetuar a adição e subtração de monômios entre termos semelhantes. E quando os termos envolvidos na operação de adição ou subtração não forem semelhantes, deixamos apenas a operação indicada.
Veja:

Dado os termos 5xy2, 20xy2, como os dois termos são semelhantes eu posso efetuar a adição e a subtração deles.

5xy2 + 20xy2 devemos somar apenas os coeficientes e conservar a parte literal.
        25 xy2

5xy2 - 20xy2 devemos subtrair apenas os coeficientes e conservar a parte literal.
    - 15 xy2

Veja alguns exemplos:

x2 - 2x2 + x2 como os coeficientes são frações devemos tirar o mmc de 6 e 9.
  6      9

3x2 - 4 x2 + 18 x2
            18

17x2
18

4x2 + 12y3 – 7y3 – 5x2 devemos primeiro unir os termos semelhantes.


12y3 – 7y3 + 4x2 – 5x2 agora efetuamos a soma e a subtração.

5y3 – x2 como os dois termos restantes não são semelhantes, devemos deixar apenas indicado à operação dos monômios.

• Reduza os termos semelhantes na expressão 4x2 – 5x -3x + 2x2. Depois calcule o seu valor numérico da expressão.

4x2 – 5x - 3x + 2x2 reduzindo os termos semelhantes.
4x2 + 2x2 – 5x - 3x
6x2 - 8x os termos estão reduzidos, agora vamos achar o valor numérico dessa expressão.

Para calcularmos o valor numérico de uma expressão devemos ter o valor de sua incógnita, que no caso do exercício é a letra x.

Vamos supor que x = - 2, então substituindo no lugar do x o -2 termos:

6x2 - 8x
6 . (-2)2 – 8 . (-2) =

6 . 4 + 16 =

24 + 16

40

Multiplicação e divisão de monômios

 Na operação de multiplicação de monômios é preciso que multipliquemos coeficiente com coeficiente e parte literal com parte literal.

Veja alguns exemplos:

(7x5) . (-3x2) = 7 . (-3) . x5 . x2 = -21x7

(-9x2y) . (-2xy2) = -9 . (-2) . (x2y) . (xy2) = 18x3y3

(5xy) . (6a) = 5 . 6 . (xy) . a = 30xya

Ao resolvermos uma divisão onde o dividendo e o divisor são monômios devemos seguir a mesma regra que adotamos para a multiplicação: dividimos coeficiente com coeficiente e parte literal com parte literal. Exemplos:

6x3 : 3x = 6 . x3 = 2x2
                 3   x2

-10x2y4 : 2xy2 = -10 x2 y4 = -5xy2
                               2  x   y2

Observação: ao dividirmos as partes literais temos que estar atentos à propriedade que diz que base igual na divisão, repete a base e subtrai os expoentes.

PRODUTOS NOTÁVEIS


Há certos produtos que ocorrem freqüentemente no calculo algébrico e que são chamados produtos notáveis. Vamos apresentar aqueles cujo emprego é mais freqüente.

QUADRADO DA SOMA DE DOIS TERMOS

Observe: (a + b)² = ( a + b) . (a + b)
_______________= a² + ab+ ab + b²
_______________= a² + 2ab + b²

Conclusão:
(primeiro termo)² + 2.(primeiro termo) . (segundo termo) + (segundo termo)²

Exemplos :

1) (5 + x)² = 5² + 2.5.x + x² = 25 + 10x + x²

2) (2x + 3y)² = (2x)² + 2.(2x).(3y) + (3y)² = 4x² + 12xy + 9y²

Exercícios

1) Calcule

a) (3 + x)² = ( R: 9 + 6x +x²)
b) (x + 5)² = ( R: x² + 10x + 25)
c) ( x + y)² = ( R: x² + 2xy +y²)
d) (x + 2)² = ( R: x² + 4x + 4)
e) ( 3x + 2)² = ( R: 9x² + 12x +4)
f) (2x + 1)² = (R: 4x² + 4x + 1)
g) ( 5+ 3x)² = (R: 25 + 30x + 9x²)
h) (2x + y)² = (R: 4x² + 4xy + y²)
i) (r + 4s)² = (R: r² + 8rs + 16s²)
j) ( 10x + y)² = (R: 100x² + 20xy + y²)
l) (3y + 3x)² = (R: 9y² + 18xy + 9x²)
m) (-5 + n)² = (R: 25 -10n + n²)
n) (-3x + 5)² = (R: 9x² - 30x + 25)
o) (a + ab)² = (R: a² + 2a²b + a²b²)
p) (2x + xy)² = (R: 4x² + 4x²y + x²y²)
q) (a² + 1)² = (R: (a²)² + 2a² + 1)
r) (y³ + 3)² = [R: (y³)² + 6y³ + 9]
s) (a² + b²)² = [R: (a²)² + 2a²b² + (b²)²]
t) ( x + 2y³)² = [R: x² + 4xy³ + 4(y³)²]
u) ( x + ½)² = (R: x² +x + 1/4)
v) ( 2x + ½)² = (R: 4x² + 2x + 1/4)
x) ( x/2 +y/2)² = [R: x²/4 + 2xy/4 + y²/4]


QUADRADO DA DIFERENÇA DE DOIS TERMOS

Observe: (a - b)² = ( a - b) . (a - b)
______________= a² - ab- ab + b²
______________= a² - 2ab + b²

Conclusão:
(primeiro termo)² - 2.(primeiro termo) . (segundo termo) + (segundo termo)²

1) ( 3 – X)² = 3² + 2.3.X + X² = 9– 6x + x²

2) (2x -3y)² = (2x)² -2.(2x).(3y) + (3y)² = 4x² - 12xy+ 9y²


Exercícios

1) Calcule

a) ( 5 – x)² = (R: 25 – 10x + x²)
b) (y – 3)² = (R: y² - 6y + 9)
c) (x – y)² = (R: x² - 2xy + y²)
d) ( x – 7)² = (R: x² - 14x + 49)
e) (2x – 5) ² = (R: 4x² - 20 x + 25)
f) (6y – 4)² = (R: 36y² - 48y + 16)
g) (3x – 2y)² = (R: 9x² - 12xy + 4y²)
h) (2x – b)² = (R: 4x² - 4xb + b²)
i) (5x² - 1)² = [R: 25(x²)² - 10x² + 1)
j) (x² - 1)² =
l) (9x² - 1)² =
m) (x³ - 2)² =
n) (2m - 3)² =
o) (x – 5y³)² =
p) (1 - mx)² =
q) (2 - x)² =
r) (-3x – 5)² =
s) (x³ - m³)² =






PRODUTO DA SOMA PELA DIFERENÇA DE DOIS TERMOS

(a + b). (a – b) = a² - ab + ab - b² = a²- b²

conclusão:
(primeiro termo)² - (segundo termo)²

Exemplos :

1) ( x + 5 ) . (x – 5) = x² - 5² = x² - 25
2) (3x + 7y) . (3x – 7y) = (3x)² - (7y)² = 9x² - 49y²


EXERCÍCIOS

1) Calcule o produto da soma pela diferença de dois termos:

a) (x + y) . ( x - y) = (R : x² - y²)
b) (y – 7 ) . (y + 7) = ( R : x² - 49)
c) (x + 3) . (x – 3) = ( R: x² - 9)
d) (2x + 5 ) . (2x – 5) = ( R: 4x² - 25)
e) (3x – 2 ) . ( 3x + 2) = ( R: 9x² - 4 )
f) (5x + 4 ) . (5x – 4) = ( R: 25x² - 16)
g) (3x + y ) (3x – y) = (R: 9x² - y² )
h) ( 1 – 5x) . (1 + 5x) = ( R: 1 - 25x² )
i) (2x + 3y) . (2x – 3y) = ( R: 4x² - 9y² )
j) (7 – 6x) . ( 7 + 6x) = (R: 49 - 36x²)
l) (1 + 7x²) . ( 1 – 7x²) =
m) (3x² - 4 ) ( 3x² + 4) =
n) (3x² - y²) . ( 3x² + y²) =
o) (x + 1/2 ) . ( x – 1/2 ) =
p)(x – 2/3) . ( x + 2/3) =
q)( x/4 + 2/3) . ( x/4 – 2/3) =






CUBO DA SOMA OU DA DIFERENÇA DE DOIS TERMOS
.
Exemplo

a) (a + b)³ = (a + b) . (a + b)²
------------=(a + b) . (a² + 2ab + b²)
-------------= a³ + 2a²b + ab² + a²b + 2ab² + b³
-------------= a³ + 3a²b + 3ab² + b³

b) (a – b)³ = (a - b) . (a – b)²
-------------= ( a – b) . ( a² - 2ab + b²)
------------ = a³ - 2a²b + ab² - a²b + 2ab² - b³
------------ = a³ - 3a²b + 3ab² - b³

c) ( x + 5 )³ = x³ + 3x²5 + 3x5² + 5 ³
-------------- = x³ + 15x² + 75x +125

d) (2x – y )³ = (2x)³ - 3(2x)²y + 3(2x)y² - y³
--------------- = 8x³ - 3(4x²)y + 6xy² - y³
--------------- = 8x³ - 12x²y + 6xy² - y³


EXERCICIOS

1) Desenvolva

a) ( x + y)³ = (R: x³ + 3x²y + 3xy² + y³)
b) (x – y)³ = (R: x³ - 3x²y + 3xy² - y³)
c) (m + 3)³ = ( R: m³ + 9m² + 27m +27)
d) (a – 1 )³ = (R: a³ - 3a² + 3a -1)
e) ( 5 – x)³ = (R: 125 - 75x + 15x² -x³)
f) (-a - b)³
g) (x + 2y)³
h) ( 2x – y )³
i) (1 + 2y)³
j) ( x – 2x)³
k) ( 1 – pq)³
l) (x – 1)³
m) ( x + 2 )³
n) ( 2x – 1)³
o) ( 2x + 5 )³
p) (3x – 2 )³
OPERAÇÕES COM POLINÔMIOS


ADIÇÃO DE POLINÔMIOS



EXEMPLO

Vamos calcular:

(3x²- 6x + 4) + (2x² + 4x – 7)=
=3x²-6x+4+2x²+4x-7=
=3x²+2x²-6x+4x+4-6=
=5x²-2x-3



EXERCÍCIOS

1) Efetue as seguintes adições de polinômios:

a) (2x²-9x+2)+(3x²+7x-1) _______ (R:5x² -2x + 1)
b) (5x²+5x-8)+(-2x²+3x-2) ______ (R:3x² + 8x - 10)
c) (3x-6y+4)+(4x+2y-2) ________ (R:7x -4y +2)
d) (5x²-7x+2)+(2x²+7x-1) _______ (R:7x²+ 1)
e) (4x+3y+1)+(6x-2y-9) _________ (R:10x +1y-8)
f) (2x³+5x²+4x)+(2x³-3x²+x) _____ (R:4x³ +2x²+ 5x)
g) (5x²-2ax+a²)+(-3x²+2ax-a²) ____ (R: 2x²)
h) (y²+3y-5)+(-3y+7-5y²) ________ (R: -4y² + 2)
i) (x²-5x+3)+(-4x²-2x) __________ (R:-3x² - 7x + 3)
j) (9x²-4x-3)+(3x²-10) __________ (R:12x² -4x- 13)



SUBTRAÇÃO DE POLINÔMIOS

EXEMPLOS

Vamos calcular:

(5x²-4x+9)-(8x²-6x+3)=
=5x²-4x+9-8x²+6x-3=
=5x²-8x²-4x+6x+9-3=
=-3x²+2x+6

EXERCICIOS

1) Efetue as seguintes subtrações:
a) (5x²-4x+7)-(3x²+7x-1) _____ (R: 2x² - 11x + 8)
b) (6x²-6x+9)-(3x²+8x-2) _____ (R: 3x² - 14x + 11)
c) (7x-4y+2)-(2x-2y+5) _______ (R: 5x - 2y – 3)
d) (4x-y-1)-(9x+y+3) _________ (R: -5x – 2y – 4)
e) (-2a²-3ª+6)-(-4a²-5ª+6) _____ ( R: -2a² +2a)
f) (4x³-6x²+3x)-(7x³-6x²+8x) ___ (R: -3x³ - 5x)
g) (x²-5x+3)-(4x²+6) _________ (R: -3x² -5x -3)
h) (x²+2xy+y²)-(y²+x²+2xy) ____ (R: 0)
i) (7ab+4c-3a)-(5c+4a-10) ______ (R: 7ab -c-7a + 10)


MULTIPLICAÇÃO DE POLINÔMIOS


EXEMPLOS

1) 4x(2x-3y ) =
=4x. 2x – 4x.3y
=8x² - 12xy

2) (3x + 5) . (x + 2)
= 3x(x+2) + 5(x + 2)=
=3x²+6x+5x+10
= 3x² + 11x + 10


EXERCICIOS

1) Calcule os produtos

a) 3(x+y) ____ (R: 3x +3y)
b) 7(x-2y) ___ (R: 7x - 14y)
c) 2x(x+y) ___ (R: 2x² + 2xy)
d) 4x (a+b) ___ (R: 4xa + 4xb)
e) 2x(x²-2x+5) _ (R:2x³ - 4x² + 10x)
f) (x+5).(x+2) __ (R: x² +7x +10)
g) (3x+2).(2x+1) __ (R: 6x² +7x + 2)
h) (x+7).(x-4) ____ (R: x² +3x -28)
i) (3x+4).(2x-1) ___ (R: 6x² +5x -4)
j) (x-4y).(x-y) ____ (R: x² -5xy + 4y²)
k) (5x-2).(2x-1) ___ (R: 10x² -9x + 2)
l) (3x+1).(3x-1) ___ (R: 9x² - 1)
m) (2x+5).(2x-5) __ (R: 4x² - 25)
n) (6x²-4).(6x²+4) __ (R:
o) (3x²-4x-3).(x+1) __ (R: 3x³ - 1x² - 7x -3)
p) (x²-x-1).(x-3) _____ (R: x³ - 4x² + 2x + 3)
q) (x-1).(x-2).(x-3) ____ (R: x³ - 6x² - 3x - 9)
r) (x+2).(x-1).(x+3) ____ (R: x³ + 4x² + 3x + 1)
s) (x³-2).(x³+8) _______ (R:
t) (x²+2).(x²+6) _______ (R:



DIVISÃO DE UM POLINOMIO POR UM MONOMIO


Vamos efetuar as divisões:

a) (8x
- 6x) : (+2x) = 4x - 3x³
b) (15x³ - 4x²) : (-5x) = -3x² + 4x/5


Conclusão:Dividimos cada termo do polinômio pelo monômio.

EXERCÍCIOS

1) Efetue as divisões:
a) ( 12x² - 8x) : (+2x) =
b) (3y³ + 6y²) : (3y) =
c) ( 10x² + 6x) : (-2x) =
d) (4x³ - 9x) : (+3x) =
e) ( 15x³ - 10x²) : (5x²)
f) (30x² - 20xy) : (-10x)
g) (-18x² + 8x) : (+2x)
h) (6x²y – 4xy²) : (-2x)

2) Efetue as Divisões:

a) ( x³ + 2x² + x ) : (+x) =
b) (x² + x³ + x
) : (+x²) =
c) (3x
- 6x³ + 10x²) : (-2x²) =
d) (x
+ x + x³) : (-x²) =
e) (3x²y – 18xy²) : (+3xy) =
f) (7x³y – 8x²y²) : (-2xy) =
g) (4x²y + 2xy – 6xy²) : (-2xy) =
h) (20x¹² - 16x
- 8x) : ( +4x) =
i) (3xy
+ 9x²y – 12xy²) : (+3xy) =

DIVISÃO DE POLINÔMIO POR POLINÔMIO

explicaremos como se efetua a divisão de polinômios pelo método de chaves, por meio de exemplos.





Exemplo 1



Vamos efetuar a divisão:

(2x² - 5x - 12) : ( x -4)

Observe que os polinômios estão ordenados segundo as potências decrescentes de x.

a)Coloque o polinômio assim:

















b) Divida o primeiro termo do dividendo (2x²) pelo primeiro termo do divisor (x) e obtenha o primeiro termo do quosciente (2x)














c) Multiplique o primeiro termo do quosciente (2x) pelos termos do divisor , colocando os produtos com sinais trocados embaixo dos termos semelhantes do dividendo. A seguir , reduza so termos semelhantes:


Exemplo 2

Vamos calcular a divisão






Terminamos a divisão, pois o grau de x - 1 (resto) é inferior ao de 2x² - 3x + 1 (divisor)

logo: quociente : 3x² - x - 6
resto: x -1


EXERCICIOS

1) Calcule os quocientes:

a) ( x² + 5x + 6) : (x + 2)
b) (x² - 7x + 10 ) : ( x - 2)
c) (2x² + 6x + 4 ) : ( x + 1)
d) ( x³ - 6x² + 11x – 6) : ( x – 3)
e) ( 7x³ + 27x² - 3x + 4 ) : ( x + 4)
f) (2x³ + 3x² - x – 2) : ( 2x – 3)
g) ( x³ - 6x² + 7x + 4) : (x² - 2x – 1)
h) (3x³ - 13x + 37x – 50 ) : ( x² -2x + 5)
i) ( 10x³ - 31x² + 26x – 3) : ( 5x² - 8x + 1)
j) ( 4x - 14x³ + 15x² -17x + 5 ) : (x² - 3x + 1)

Nenhum comentário:

Postar um comentário