Tales de Mileto é descrito em algumas lendas como homem de negócios, mercador de sal, defensor do celibato ou estadista da visão, mas a verdade é que pouco se sabe sobre sua vida.
As obras de Tales não conseguiram sobreviver até nossos dias mas com base em tradições pode-se reconstruir algumas idéias.
Viajando muito pelos centros antigos de conhecimento deve ter obtido informações sobre Astronomia e Matemática aprendendo Geometria no Egito Na Babilônia, sob o governo de Nabucodonosor, entrou em contato com as primeiras tabelas e instrumentos astronômicos e diz-se que em 585 A.C. conseguiu predizer o eclipse solar que ocorreria neste ano, assombrando seus contemporâneos e é nesta data que se apoiam para indicar aproximadamente o ano em que nasceu,. pois na época deveria contar com quarenta anos, mais ou menos. Calcula-se que tenha morrido com 78 anos de idade.
Tales é considerado o primeiro filósofo e o primeiro dos sete sábios, discípulo dos egípcios e caldeus, e recebe o título comumente de “primeiro matemático’’ verdadeiro, tentando organizar a Geometria de forma dedutiva.
Acredita-se que durante sua viagem à Babilônia estudou o resultado que chega até nós como "Teorema de Tales" segundo o qual um ângulo inscrito num semicírculo é um ângulo reto.
A ele também se devem outros quatro teoremas fundamentais: "um circulo é bissectado por um diâmetro'', "os ângulos da base de um triângulo isósceles são iguais", "os pares de ângulos opostos formados por duas retas que se cortam são iguais", e "se dois triângulos são tais que dois ângulos e um lado são iguais respectivamente a dois ângulos e um lado do outro, então, eles são congruentes".
Parece provável que Tales conseguiu medir a altura de uma pirâmide do Egito observando o comprimento das sombras no momento em que a sombra de um bastão vertical é igual á sua altura".
Tales foi mestre de um grupo de seguidores de suas idéias, chamado "Escola Jániá'' e foi o primeiro homem da História a quem se atribuem descobertas matemáticas especificas e, como disse Aristóteles, "para Tales a questão primordial não era o que sabemos, mas como sabemos''.
(www.netescola.pr.gov.br)
As obras de Tales não conseguiram sobreviver até nossos dias mas com base em tradições pode-se reconstruir algumas idéias.
Viajando muito pelos centros antigos de conhecimento deve ter obtido informações sobre Astronomia e Matemática aprendendo Geometria no Egito Na Babilônia, sob o governo de Nabucodonosor, entrou em contato com as primeiras tabelas e instrumentos astronômicos e diz-se que em 585 A.C. conseguiu predizer o eclipse solar que ocorreria neste ano, assombrando seus contemporâneos e é nesta data que se apoiam para indicar aproximadamente o ano em que nasceu,. pois na época deveria contar com quarenta anos, mais ou menos. Calcula-se que tenha morrido com 78 anos de idade.
Tales é considerado o primeiro filósofo e o primeiro dos sete sábios, discípulo dos egípcios e caldeus, e recebe o título comumente de “primeiro matemático’’ verdadeiro, tentando organizar a Geometria de forma dedutiva.
Acredita-se que durante sua viagem à Babilônia estudou o resultado que chega até nós como "Teorema de Tales" segundo o qual um ângulo inscrito num semicírculo é um ângulo reto.
A ele também se devem outros quatro teoremas fundamentais: "um circulo é bissectado por um diâmetro'', "os ângulos da base de um triângulo isósceles são iguais", "os pares de ângulos opostos formados por duas retas que se cortam são iguais", e "se dois triângulos são tais que dois ângulos e um lado são iguais respectivamente a dois ângulos e um lado do outro, então, eles são congruentes".
Parece provável que Tales conseguiu medir a altura de uma pirâmide do Egito observando o comprimento das sombras no momento em que a sombra de um bastão vertical é igual á sua altura".
Tales foi mestre de um grupo de seguidores de suas idéias, chamado "Escola Jániá'' e foi o primeiro homem da História a quem se atribuem descobertas matemáticas especificas e, como disse Aristóteles, "para Tales a questão primordial não era o que sabemos, mas como sabemos''.
(www.netescola.pr.gov.br)
Nenhum comentário:
Postar um comentário