Retém a instrução e não a largues. guarda-a, porque ela é a tua vida. (Pv. 4:13)

Retém a instrução e não a largues. Guarda-a, porque ela é a tua vida. (Pv. 4:13)

Mostrando postagens com marcador GRANDES MATEMÁTICOS. Mostrar todas as postagens
Mostrando postagens com marcador GRANDES MATEMÁTICOS. Mostrar todas as postagens

5 de maio de 2011

PITÁGORAS

Segundo a tradição, a pitonisa do oráculo de Delfos avisou aos pais de Pitágoras - o rico joalheiro Mnésarcnos e sua mulher Parthénis - que o filho esperado por Parthénis seria um homem de extrema beleza, inteligência e bondade, e iria contribuir de forma única para o benefício de todos os homens. Quando a criança nasceu na ilha de Samos, na Grécia, numa data que se situa entre 570 e 590 a.C., seus progenitores o chamaram de Pitágoras, em homenagem à pitonisa que havia previsto para ele uma vida incomum. Dentre as lendas que cercam a vida de Pitágoras, algumas asseguram que ele na verdade não era um homem comum, mas sim um deus que tomara a forma de ser humano para melhor guiar a humanidade e ensinar a filosofia, ciência e a arte.
Nessa época, na ilha de Samos haviam, no aspecto religioso, duas correntes opostas: de um lado, os ritos dionisíacos, degenerados pela perda do seu sentido sagrado e, do outro lado, os ritos órficos, caracterizados por uma ascese rigorosa. Pitágoras seguiu estes últimos, que influenciaram a sua conduta por toda vida.
Mal acabado de sair da adolescência, Pitágoras acreditou que todos os conhecimentos que os gregos possuíam nada mais eram do que fragmentos da grande sabedoria que se encontrava nos templos egípcios e na Mesopotâmia. A fim de saber mais acerca dos mistérios da Vida e do Universo, era necessário que se deslocasse para o Oriente, aos lugares em que esses conhecimentos ainda permaneciam vivos. Assim, escolhendo Esparta como ponto de partida, o filósofo de Samos inicia um grande périplo através das maiores cidades e templos do mundo antigo que se prolongou por 40 anos, antes de voltar de novo à sua terra natal.
Esta viagem levou-o a encontrar-se com as maiores personalidades do seu tempo. Em Mileto, encontrou Tales e Anaximandro. Porém, foi no Egito, onde permaneceu cerca de 25 anos, que Pitágoras extraiu os conhecimentos que fundamentariam seu ensinamento futuro. Em Saís, encontrou o faraó Amasis que, reconhecendo as suas enormes capacidades, permitiu a sua admissão nos templos iniciáticos do Egito. Existem ainda indícios de que teria sido discípulo de Zoroastro, e é certo que estudou com os maiores mestres daquela época.
Uma afirmativa aceita pelos historiadores é que Pitágoras foi o primeiro homem a se intitular um filósofo, ou seja, amigo da sabedoria. Antes dele, os pensadores chamavam a si mesmos sages, significando algo como aqueles que sabem. Pitágoras, bem mais modesto, pretendia ser um homem que apenas procurava descobrir.
Quarenta anos após tê-la deixado, Pitágoras retornou a Samos, sua ilha natal. A esperança de aí fundar uma escola iniciática fracassou em virtude da recepção hostil do tirano Policrato. Partiu então para Crotona, cidade helênica da Itália meridional, onde fundou a sua escola iniciática, conhecida pelo nome de "Fraternidade Pitagórica". Ali reuniu um grupo de discípulos, a quem iniciou nos conhecimentos de matemática, música e astronomia, consideradas como a base de todas as artes e ciências.
Para entrar na "Fraternidade Pitagórica", o candidato era submetido a rudes provas, tanto físicas como de ordem psicológica. Se essas provas eram ultrapassadas, então o neófito era aceito como "acusmático", o que significa que deveria fazer o voto de silêncio durante os cinco primeiros anos. Os ensinamentos nunca eram escritos, mas transmitidos de "boca a ouvido" àqueles que estavam prontos a assimilá-los.
Pitágoras, na sua linguagem dos números, designava Deus pelo número 1 e a Matéria pelo 2; exprimia o Universo pelo número 12 resultante da multiplicação de 3 por 4; quer dizer, Pitágoras concebia o universo composto por três mundos particulares que, encaixando-se uns nos outros através dos quatro princípios ou elementos da Natureza, desenvolviam-se em 12 esferas concêntricas. Ao Ser inefável que inundava estas 12 esferas sem ser captado por nenhuma delas, o filósofo de Samos chamava-lhe Deus. Pitágoras conhecera e aprendera no Egito a aplicação do número 12 ao Universo; também era assim para os Caldeus e outros povos. A instituição do Zodíaco com seus 12 signos é a demonstração cabal deste conhecimento.
Pitágoras aprendera no Egito que os astros são corpos vivos que se movimentam no espaço, obedecendo a uma lei de harmonia universal, à qual estão inexoravelmente sujeitos no tempo, como todas as coisas manifestadas. Nas suas formas esféricas, o mestre de Samos via a figura geométrica mais perfeita.
O filósofo considerava o Homem um Universo em escala reduzida e, no Universo, ele via um grande Homem. Ele chamou-lhes respectivamente Microcosmos e Macrocosmos. Assim, o Homem como uma célula contida no Todo, seria um reflexo do ternário universal constituído de Corpo, Alma e Espírito.
Como costuma acontecer com os grandes libertários, Pitágoras logo arranjou inimigos políticos e pessoais. Entre um dos muitos que tentaram entrar para sua escola e não foram admitidos, estava um homem que passou então a perseguí-lo. Através de falsos testemunhos, colocou o povo da cidade contra Pitágoras, até que um dia a escola foi destituída e o mestre assassinado. Não existe, no entanto, certeza sobre essa morte: alguns dizem que ele conseguiu fugir para Metaponto, onde viveu o resto da sua vida.
Pitágoras não deixou nenhum registro escrito, e sendo sua sociedade secreta, certamente existe muito sobre ele que foi perdido após a morte de seus discípulos, e a dissolução dos pitagóricos. Difícil hoje dizer o que ao certo foi obra de pitágoras e o que foi obra de seus discípulos, uma vez que a figura de pitágoras e a figura da filosofia pitagórica são indivisíveis hoje, de modo a tornar árduo o trabalho de separar o homem de seus ensinamentos, para aqueles que a isto se dedicam. O teorema mais famoso de Pitágoras, porém, relacionando os lados de um triângulo equilátero, é indiscutívelmente uma descoberta do filósofo, bem como grandes avanços geométricos, musicais e filosóficos mais tarde aprofundados por seus sucessores: Sócrates, Platão, Tales e outros.
  
Pitágoras e a Música:
Nenhum músico teve tanta importância no período clássico quanto Pitágoras. Conforme conta a lenda, Pitágoras foi guiado pelos deuses na descoberta das razões matemáticas por trás dos sons depois de observar o comprimento dos martelos dos ferreiros. A ele é creditado a descoberta do intervalo de uma oitava como sendo referente a uma relação de frequência de 2:1, uma quinta em 3:2, uma quarta em 4:3, e um tom em 9:8. Os seguidores de Pitágoras aplicaram estas razões ao comprimento de fios de corda em um instrumento chamado cânon, ou monocorda, e, portanto, foram capazes de determinar matematicamente a entonação de todo um sistema musical. Os pitagóricos viam estas razões como governando todo o Cosmos assim como o som, e Platão descreve em sua obra, Timeu, a alma do mundo como estando estruturada de acordo com estas mesmas razões. Para os pitagóricos, assim como para platão, a música se tornou uma natural extensão da matemática, bem como uma arte. A matemática e as descobertas musicais de Pitágoras foram, desta forma, uma crucial influência no desenvolvimento da música através da idade média na Europa.

Demonstração do Teorema de Pitágoras:
Talvez a obra mais famosa de Pitágoras seja seu teorema, relacionando os lados de um triângulo equilátero. A seguir, a demonstração de como este filósofo e matemático chegou a tal relação usando apenas a geometria:
imagem para ilustrar a explicação abaixo
Em um triângulo retângulo qualquer, trace três quadrados adjacentes a cada um dos lados, tendo cada um deles o comprimento de um lado.
O quadrado referente ao maior dos dois catetos, divida ao meio, fazendo passar uma linha paralela à hipotenusa. Em seguida, divida-o novamente ao meio fazendo passar por seu centro uma linha perpendicular à hipotenusa. O resultado será um quadrado dividido em quatro trapézios irregulares.
Estes trapézios irregulares possuem dois lados que, unidos, tem o comprimento da hipotenusa. Portanto, é possível rearranjá-los de modo a se encaixarem no quadrado ao lado da hipotenusa.
Este quadrado, assim formado, cujos lados tem o comprimento da hipotenusa, resultará na formação de um quadrado menor em seu inteiror, cujo lado será igual ao lado do quadrado criado no menor dos catetos (b = a - c).
Portanto, o quadrado da hipotenusa tem área (a hipotenusa ao quadrado) igual à soma do quadrado do cateto menor mais o quadrado do cateto maior (as áreas dos 4 trapézios formados se igualam à área do quadrado do cateto maior).
quod erat demonstrandum!

Embora sua biografia seja marcada por diversas lendas e fatos não comprovados pela História, temos dados e informações importantes sobre sua vida. Com 18 anos de idade, Pitágoras já conhecia e dominava muitos conhecimentos matemáticos e filosóficos da época. Através de estudos astronômicos, afirmava que o planeta Terra era esférico e suspenso no Espaço (idéia pouco conhecida na época). Encontrou uma certa ordem no universo, observando que as estrelas, assim como a Terra, girava ao redor do Sol.

Recebeu muita influência científica e filosófica dos filósofos gregos Tales de Mileto, Anaximandro e Anaxímenes. 
Enquanto visitava o Egito, impressionado com as pirâmides, desenvolveu o famoso Teorema de Pitágoras. De acordo com este teorema é possível calcular o lado de um triângulo retângulo, conhecendo os outros dois. Desta forma, ele conseguiu provar que a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.

Atribui-se também a ele o desenvolvimento da tábua de multiplicação, o sistema decimal e as proporções aritméticas. Sua influência nos estudos futuros da matemática foram enormes, pois foi um dos grandes construtores da base dos conhecimentos matemáticos, geométricos e filosóficos que temos atualmente.
Alguns pensamentos (frases) de Pitágoras:

· Não é livre quem não consegue ter domínio sobre si.

· Todas as coisas são números.

· Aquele que fala semeia; aquele que escuta recolhe.

· Com ordem e com tempo encontra-se o segredo de fazer tudo e tudo fazer bem.

· Educai as crianças e não será preciso punir os homens.

· A melhor maneira que o homem dispõe para se aperfeiçoar, é aproximar-se de Deus.

· A Evolução é a Lei da Vida, o Número é a Lei do Universo, a Unidade é a Lei de Deus.

· Ajuda teus semelhantes a levantar a carga, mas não a carregues.

2 de maio de 2011

RENÊ DESCARTES


René Descartes, filósofo e matemático, nasceu em La Haye, na Touraine, cerca de 300 quilômetros a sudoeste de Paris, em 31 de março de 1596. O pai, Joachim Descartes, advogado e juiz, possuía terras e o título de escudeiro, primeiro grau de nobreza, e era Conselheiro no Parlamento de Rennes, na vizinha província da Bretanha, que constitui o extremo noroeste da França. De 1604 a 1614, estuda no colégio jesuíta de La Flèche. 

Apesar de apreciado por seus professores, ele se declara, no "Discurso sobre o Método", decepcionado com o ensino que lhe foi ministrado: a filosofia escolástica não conduz a nenhuma verdade indiscutível, "Não encontramos aí nenhuma coisa sobre a qual não se dispute". Só as matemáticas demonstram o que afirmam: "As matemáticas agradavam-me sobretudo por causa da certeza e da evidência de seus raciocínios". Mas as matemáticas são uma exceção, uma vez que ainda não se tentou aplicar seu rigoroso método a outros domínios. Eis por que o jovem Descartes, decepcionado com a escola, parte à procura de novas fontes de conhecimento. Após alguns meses de elegante lazer com sua família em Rennes, onde se ocupa com equitação e esgrima, vamos encontrá-lo na Holanda engajado no exército do príncipe Maurício de Nassau.

Em 1619, ei-lo a serviço do Duque de Baviera. Em seguida, Descartes prepara uma obra de física, o Tratado do Mundo, a cuja publicação ele renuncia visto que em 1633 toma conhecimento da condenação de Galileu. É certo que ele nada tem a temer da Inquisição. Entre 1629 e 1649, ele vive na Holanda, país protestante. E em 1637, decide publicar três pequenos resumos de sua obra científica: A Dióptrica, Os Meteoros e A Geometria. Esses resumos, que quase não são lidos atualmente, são acompanhados por um prefácio e esse prefácio foi que se tornou famoso: é o Discurso sobre o Método. Ele faz ver que o seu método, inspirado nas matemáticas, é capaz de provar rigorosamente a existência de Deus. Em 1641, aparecem as Meditações Metafísicas, sua obra-prima, acompanhadas de respostas às objeções. Em 1644, ele publica uma espécie de manual cartesiano. Os Princípios de Filosofia, dedicado à princesa palatina Elisabeth, de quem ele é, em certo sentido, o diretor de consciência e com quem troca importante correspondência. Em 1644, por ocasião da rápida viagem a Paris, Descartes encontra o embaixador da frança junto à corte sueca, Chanut, que o põe em contato com a rainha Cristina.

Descartes, que sofre atrozmente com o frio, contrai uma pneumonia e se recusa a ingerir as drogas dos charlatões e a sofrer sangrias sistemáticas, vindo a falecer em Estocolmo, Suécia, a 09 de fevereiro de 1650, aos 54 anos. Seu ataúde, alguns anos mais tarde, será transportado para a França. Luís XIV proibirá os funerais solenes e o elogio público do defunto.

Blaise PascaL

Blaise Pascal foi um Filósofo e Matemático francês, nasceu em Clermont em 1623 e morreu em 1662 na cidade de Paris. Era filho de Etienne Pascal, também Matemático. Em 1632, toda a família foi viver em Paris.

O pai de Pascal, que tinha uma concepção educacional pouco ortodoxa, decidiu que seria ele próprio a ensinar os filhos e que Pascal não estudaria Matemática antes dos 15 anos, pelo que mandou remover de casa todos os livros e textos matemáticos. Contudo, movido pela curiosidade, Pascal começou a trabalhar em Geometria a partir dos 12 anos, chegando mesmo a descobrir, por si, que a soma dos ângulos de um triângulo é igual a dois ângulos retos. Então o seu pai resignou-se e ofereceu a Pascal uma cópia do livro de Euclides.



Aos 14 anos, Pascal começou a acompanhar o seu pai nas reuniões de Mersenne, onde se encontravam muitas personalidades importantes. Aos 16 anos, numa das reuniões, Pascal apresentou uma única folha de papel que continha vários teoremas de Geometria Projetiva, incluindo o hoje conhecido como "Hexagrama místico" em que demonstra que "se um hexágono estiver inscrito numa cônica, então as intersecções de cada um dos 3 pares de lados opostos são colineares". Em Fevereiro de 1640 foi publicado este seu trabalho – "Ensaio sobre secções cônicas", no qual trabalhou durante 3 anos

Em 1639 a família de Pascal deixou Paris e mudou-se para Rouen, onde o seu pai tinha sido nomeado coletor de impostos da Normandia Superior.

Aos dezoito anos e com o objetivo de ajudar o pai na tarefa de cobrar impostos, Pascal inventou a primeira máquina digital, chamada Pascalinne para levar a cabo o processo de adição e subtração, e posteriormente organizou a produção e comercialização destas máquinas de calcular (que se assemelhava a uma calculadora mecânica dos anos 40). Pelo menos sete destes «computadores» ainda existem; uma foi apresentada à rainha Cristina da Suécia em 1652.

Quando o seu pai morreu em 1651, Pascal escreveu a uma das suas irmãs uma carta sobre a morte com um profundo significado cristão em geral e em particular sobre a morte do pai. Estas suas ideias religiosas foram a base para a sua grande obra filosófica "Pensées" que constitui um conjunto de reflexões pessoais acerca do sofrimento humano e da fé em Deus.

Em Física destacou-se pelo seu trabalho "Tratado sobre o equilíbrio dos líquidos" relacionado com a pressão dos fluídos e hidráulica. O princípio de Pascal diz que a pressão em qualquer ponto de um fluido é a mesma, de forma a que a pressão aplicada num ponto é transmitida a todo o volume do contentor. Este é o princípio do macaco e do martelo hidráulicos.

Pascal estudou e demonstrou no trabalho do "Triângulo aritmético", publicado em 1654, diversas propriedades do triângulo e aplicou-as no estudo das probabilidades. Antes de Pascal, já Tartaglia usara o triângulo nos seus trabalhos e, muito antes, os matemáticos árabes e chineses já o utilizavam. Este famoso triângulo que se pode continuar indefinidamente aumentando o número de linhas, é conhecido como Triângulo de Pascal ou Triângulo de Tartaglia. Trata-se de um arranjo triangular de números em que cada número é igual à soma do par de números acima de si. O triângulo de Pascal apresenta inúmeras propriedades e relações, por exemplo, "as somas dos números dispostos ao longo das diagonais do triângulo geram a Sucessão de Fibonacci.

Em correspondência com Fermat, durante o Verão de 1654, Pascal estabeleceu os fundamentos da Teoria das Probabilidades. O seu último trabalho foi sobre a Ciclóide – a curva traçada por um ponto da circunferência que gira, sem escorregar, ao longo de uma linha reta. Durante esse ano desinteressou-se pela ciência; passou os últimos anos da vida a praticar caridade e decidiu dedicar-se a Deus e à religião. Faleceu com 39 anos devido a um tumor maligno que tinha no estômago se ter estendido ao cérebro.


--------------------------------------------------------------------------------

Fontes:
Grande Enciclopédia Portuguesa Brasileira, Editorial Enciclopédia Lda.
Boursin, Jean-Louis. Dicionário elementar de matemáticas modernas. Publicações Dom Quixote.
Jorge, A., Alves C. , Fonseca, G., Barbedo, J. Infinito 12. Areal Editores.

30 de abril de 2011

TALES DE MILETO

Tales de Mileto é descrito em algumas lendas como homem de negócios, mercador de sal, defensor do celibato ou estadista da visão, mas a verdade é que pouco se sabe sobre sua vida.
      As obras de Tales não conseguiram sobreviver até nossos dias mas com base em tradições pode-se reconstruir algumas idéias.
      Viajando muito pelos centros antigos de conhecimento deve ter obtido informações sobre Astronomia e Matemática aprendendo Geometria no Egito Na Babilônia, sob o governo de Nabucodonosor, entrou em contato com as primeiras tabelas e instrumentos astronômicos e diz-se que em 585 A.C. conseguiu predizer o eclipse solar que ocorreria neste ano, assombrando seus contemporâneos e é nesta data que se apoiam para indicar aproximadamente o ano em que nasceu,. pois na época deveria contar com quarenta anos, mais ou menos. Calcula-se que tenha morrido com 78 anos de idade.
      Tales é considerado o primeiro filósofo e o primeiro dos sete sábios, discípulo dos egípcios e caldeus, e recebe o título comumente de “primeiro matemático’’ verdadeiro, tentando organizar a Geometria de forma dedutiva.
      Acredita-se que durante sua viagem à Babilônia estudou o resultado que chega até nós como "Teorema de Tales" segundo o qual um ângulo inscrito num semicírculo é um ângulo reto.
       A ele também se devem outros quatro teoremas fundamentais: "um circulo é bissectado por um diâmetro'', "os ângulos da base de um triângulo isósceles são iguais", "os pares de ângulos opostos formados por duas retas que se cortam são iguais", e "se dois triângulos são tais que dois ângulos e um lado são iguais respectivamente a dois ângulos e um lado do outro, então, eles são congruentes".
      Parece provável que Tales conseguiu medir a altura de uma pirâmide do Egito observando o comprimento das sombras no momento em que a sombra de um bastão vertical é igual á sua altura".
       Tales foi mestre de um grupo de seguidores de suas idéias, chamado "Escola Jániá'' e foi o primeiro homem da História a quem se atribuem descobertas matemáticas especificas e, como disse Aristóteles, "para Tales a questão primordial não era o que sabemos, mas como sabemos''.

(www.netescola.pr.gov.br)

EINSTEIN

Albert Einstein nasceu numa sexta-feira, dia 14 de março de 1879, em Ulm, uma próspera cidade ao sul da Alemanha.
     Ele foi o primeiro e único filho homem de Hermman Einstein e Pauline Koch. Já nos primeiros anos de sua vida, Einstein provocava comentários. Sua mãe estava convencida de que o formato de sua cabeça era fora do comum e temia que tivesse algum problema mental, porque era muito lento para aprender a falar. Passou sua juventude em Munique, onde sua família possuía uma pequena oficina destinada à construção de máquinas elétricas. Einstein não falou até os 3 anos de idade, mas desde jovem mostrou uma curiosidade brilhante sobre a Natureza, e uma habilidade para compreender conceitos matemáticos avançados.
     Com 12 anos de idade, aprendeu por conta própria a Geometria Euclideana. Albert cresceu forte e saudável, embora não gostasse de praticar esportes organizados. Era um garoto quieto e particularmente solitário, que preferia ler e ouvir música. Não gostava do regime monótono e do espírito sem imaginação da escola em Munique. Se considerasse os conselhos de um de seus professores teria abandonado a escola.
Quando sua família mudou-se para Milão, na Itália, Einstein tinha 15 anos. Nesta ocasião passou 1 ano com sua família em Milão. Terminou a escola secundária em Arrau, Suíça, e com boas notas somente em Matemática, entrou, em 1896, no Instituto Politécnico de Zurique, onde se graduou em 1901 com dificuldades.
     Einstein não gostava dos métodos de instrução lá. Freqüentemente não assistia às aulas, usando o tempo para estudar Física ou tocar seu adorado violino. Passou nos exames e graduou-se em 1900. Seus professores não o tinham como grande aluno e não o recomendariam para uma posição na Universidade. Por dois anos Einstein trabalhou como tutor e professor substituto. Em 1902, assegurou uma posição como examinador no Escritório de Patentes da Suíça em Bern.
     Em 1903, casou-se com Mileva Maric, que havia sido sua colega na Escola Politécnica. Em 1905, após ter conseguido um emprego no serviço federal de patentes que o deixava com horas vagas para estudar os problemas da física contemporânea, o mundo tomou conhecimento de sua existência através da publicação de cinco artigos nos Annalen der Physik, revista científica alemã. No mesmo ano recebeu seu grau de Doutor pela Universidade de Zurique por uma dissertação teórica a respeito das dimensões de moléculas, e também publicou 3 trabalhos teóricos de grande importância para o desenvolvimento da Física do século 20. No primeiro desses trabalhos, sobre o Movimento Browniano, ele realizou previsões significantes sobre o movimento de partículas distribuídas aleatoriamente em um fluido. Tais previsões seriam confirmadas posteriormente, através de experiências.
     O segundo Trabalho, sobre o Efeito Fotoelétrico, continha uma hipótese revolucionária a respeito da natureza da luz. Einstein não somente propôs que sob certas circunstâncias pode-se considerar a luz feita de partículas, mas também a hipótese que a energia carregada por qualquer partícula de luz, chamada de fóton, é proporcional à freqüência da radiação. Uma década mais tarde, o Físico americano Robert Andrews Millikan confirmou experimentalmente a teoria de Einstein.
     Einstein, cuja preocupação primordial é compreender a natureza da radiação eletromagnética, desenvolveu posteriormente uma teoria que seria uma fusão dos modelos de partícula e onda para a luz. Novamente, poucos cientistas compreendiam ou aceitavam suas idéias.
      A Teoria da Relatividade Especial - O terceiro grande Trabalho de Einstein em 1905, "Sobre a Eletrodinâmica dos Corposem Movimento", continha o que tornou-se conhecido como a Teoria Especial da Relatividade. Desde a época do Matemático e Físico inglês Isaac Newton, os filósofos naturais (como os físicos e químicos eram conhecidos) tentavam compreender a natureza da matéria e da radiação e como elas interagiam. Não existia uma explicação consistente para o modo como a radiação (a luz, por exemplo) e a matéria interagiam quando vistas de referenciais inerciais diferentes, isto é, uma interação vista simultaneamente por um observador em repouso e um observador movendo-se com velocidade constante.
      No Outono de 1905, após considerar estes problemas por 10 anos, Einstein percebeu que o problema não se encontrava em uma teoria da matéria, mas em uma teoria relativa às medidas. Einstein desenvolveu, então, uma teoria baseada em dois postulados: o Princípio da Relatividade, que as leis físicas são as mesmas em todos os referenciais inerciais, e o Princípio da Invariância da velocidade da luz, onde a velocidade da luz no vácuo é uma constante universal. Assim, Einstein era capaz de dar uma descrição correta e consistente de eventos físicos em referenciais inerciais diferentes sem fazer suposições especiais sobre a natureza da matéria e da radiação, ou como elas interagiam. Virtualmente, ninguém compreendeu seus argumentos.
      Einstein e a Teoria da Relatividade Geral - Mesmo antes de deixar o Escritório de Patentes em 1907, começara o trabalho de extender e generalizar o teoria da relatividade para todos os referenciais. Ele iniciou enunciando o Princípio da Equivalência, um postulado que campos gravitacionais são equivalentes à acelerações de referênciais. Por exemplo, uma pessoa em um elevador em movimento não pode, em princípio, decidir se a força que atua sobre ela é causada pela gravidade ou pela aceleração constante do elevador.
      A Teoria da Relatividade Geral completa não foi publicada até 1916. Nesta teoria, as interações de corpos que até então haviam sido atribuídas às forças gravitacionais, são explicadas como a influência dos corpos sobre a geometria do espaço-tempo (espaço quadridimensional, uma abstração matemática, tendo as três dimensões do espaço Euclideano e o tempo como a quarta dimensão).
      Baseado em sua Teoria da Relatividade Geral, Einstein explicou as previamente inexplicáveis variações no movimento orbital dos planetas, e previu a inclinação da luz de estrelas na vizinhança de um corpo maciço, como o Sol. A confirmação deste último fenômeno durante um eclipse em 1919 tornou-se um grande evento, tornando Einstein famoso no mundo inteiro. Pelo resto de sua vida, Einstein devotou tempo considerável para generalizar ainda mais esta Teoria.
      Seu último esforço, a Teoria do Campo Unificado, que não foi inteiramente um sucesso, foi uma tentativa de compreender todas as interações físicas - incluindo as interações eletromagnéticas e as interações forte e fraca - em termos da modificação da geometria do espaço-tempo entre as entidades interagentes.
      Entre 1915 e 1930 a grande preocupação da Física estava no desenvolvimento de uma nova concepção do caráter fundamental da matéria, conhecida como Teoria Quântica. Esta teoria continha a característica da dualidade partícula-onda (a luz exibe propriedades de partícula, assim como de onda), assim como o Princípio da Incerteza, que estabelece que a precisão nos processos de medidas é limitada. Einstein, entretanto, não aceitaria tais noções e criticou seu desenvolvimento até o final da sua vida. Disse Einstein uma vez: "Deus não joga dados com o mundo".
      Durante a I Guerra Mundial, com cidadania suíça, ele trabalhou na generalização de sua teoria para os sistemas acelerados. Elaborou então, uma nova teoria da gravitação em que a clássica teoria de Newton assume papel particular. Einstein, com o passar dos anos, continua a não aceitar completamente diversas teorias. Por exemplo, Einstein não aceitava o princípio de Heisenberg que o universo estivesse abandonado ao acaso. "Deus pode ser perspicaz, mas não é malicioso.", disse ele sobre este princípio que destruía o determinismo que estava ancorada a ciência desde a Grécia Antiga.
O Nobel - Einstein, o Cidadão do Mundo. Após 1919, Einstein tornou-se internacionalmente reconhecido. Ganhou o Prêmio Nobel de Física em 1921 pelo seu estudo do campo fotoelétrico, e não pela teoria da relatividade, ainda controvertida. Sua visita a qualquer parte do mundo tornava-se um evento nacional; fotógrafos e repórteres o seguiam em qualquer lugar.
O Homem Político - Einstein aceitou uma cátedra no Institute for Advance Study, em Princeton, Estados Unidos e, em 1940, adquiriu cidadania americana após o surgimento da II Guerra Mundial, em 1939. Einstein sempre assumiu posições públicas sobre os grandes problemas de sua época, fosse a respeito da existência do Estado de Israel, da União Soviética, da luta contra o nazismo, ou, após a II Guerra Mundial, contra a fabricação de armas nucleares. Einstein entregou uma carta ao presidente americano advertindo-o da possibilidade de os alemães fabricarem sua própria bomba, no entanto, a carta levou os EUA a fabricarem a sua. Num último apelo, Einstein escreveu ao presidente Theodore Roosevelt, que morreu sem ao menos ler a carta. Truman, seu sucessor, ignorou-a e lançou a bomba atômica em Hiroshima e, três dias depois, em Nagasaki, no Japão. Em 1922, Einstein tornou-se membro do Comitê de Cooperação Intelectual da Liga das Nações. Em 1925, juntamente com o líder dos direitos civis indianos Mahatma Gandhi, trabalhou numa campanha pela abolição do serviço militar obrigatório. E, em 1930, Einstein colocou novamente seu nome em outro importante manifesto internacional, desta vez organizado pela Liga Internacional da Mulher pela Paz e Liberdade. Pedia o desarmamento internacional como sendo a melhor maneira de assegurar uma contínua paz. Envolveu-se ainda em várias causas sociais.
     Em 1925, Albert Einstein veio ao Brasil. Esteve no Rio de Janeiro, em visita a instituições científicas e culturais. Proferiu duas conferências: na Academia Brasileira de Ciências e no Instituto de Engenharia do Rio de Janeiro.
      Quando Adolf Hitler começou seu governo na Alemanha, Einstein decidiu deixar a Alemanha imediatamente. Foi para os Estados Unidos e ocupou uma posição no Instituto para Estudos Avançados em Princeton, New Jersey.
      Quando a morte de Einstein foi anunciada em 1955, a notícia apareceu nas primeiras páginas dos jornais de todo o mundo: "Morreu um dos maiores homens do século 20".

(http://www.netescola.pr.gov.br/)

Sites sobre a vida de Albert Einstein:

Isaac Newton

Isaac Newton (1642 - 1727)

Primeiro cientista inglês de renome internacional, nascido em Woolsthorpe, que além de químico, foi um excelente físico, mecânico e matemático, onde se consagrou em cálculo infinitesimal. Também foi descobridor de várias leis da física, entre elas a lei da gravidade, para ele, a função da ciência era descobrir leis universais e enunciá-las de forma precisa e racional. Estudou no Trinity College, em Cambridge (1661), onde se graduou (1665). Um dos principais precursores do Iluminismo, seu trabalho científico sofreu forte influência de seu professor e orientador Barrow (desde 1663), Schooten, Viète, John Wallis, Descartes, Fermat e Cavallieri, das concepções de Galileu e Kepler, da teoria de Aristóteles sobre retas tangentes às curvas, de Apolônio sobre cônicas e da geometria de Euclides. Formulou o teorema hoje conhecido como binômio de Newton (1663). Fez suas primeiras hipóteses sobre gravitação universal e escreveu sobre séries infinitas e teoria do fluxo (1665). Por causa da peste o Trinity College foi fechado (1666) e o cientista foi para casa, em sua fazenda. Foi neste ano de retiro que construiu quatro de suas principais descobertas: o teorema binomial, o cálculo, a lei da gravitação e a natureza das cores. Construiu o primeiro telescópio de reflexão, em 1668, e foi quem primeiro observou o espectro visível que se pode obter pela decomposição da luz solar ao incidir sobre uma das faces de um prisma triangular transparente (ou outro meio de refração ou de difração), atravessando-o e projetando-se sobre um meio ou um anteparo branco. Optou, então pela teoria corpuscular de propagação da luz, enunciando-a (1675) contrariando a teoria ondulatória de Huygens. Tornou-se professor de matemática em Cambridge (1669) e entrou para a Royal Society (1672). Sua principal obra foi a publicação Philosophiae naturalis principia mathematica (1687), em três volumes, um verdadeiro monumento científico, em que enunciou a lei da gravitação universal, generalizando e ampliando as constatações de Kepler (Leis de Newton), e resumiu suas descobertas, principalmente o cálculo. Tratando essencialmente sobre física, astronomia e mecânica (leis dos movimentos, movimentos de corpos em meios resistentes, vibrações isotérmicas, velocidade do som, densidade do ar, queda dos corpos na atmosfera, pressão atmosférica, etc), tudo tratado com matemática pura, foi a sua consagração como cientista-mor de sua época. Foi nomeado Warden of the Mint (1696) e Master of the Mint (1701). Foi eleito sócio estrangeiro da Académie des Sciences (1699) e tornou-se presidente da Royal Society (1703). Publicou em Cambridge, Arithmetica universalis (1707), uma espécie de livro de texto, sobre identidades matemáticas, análise e geometria, possivelmente escrito muitos anos antes (1673). Escreveu (1669) e publicou De analysi per aequationes numero terminorum infinitas (1711), sobre séries e cálculo. Escreveu (1671) e publicou Methodus fluxionum et serierum infinitorum (1742), sobre fluxos. Expert em gravitação universal, na mecânica suas principais contribuições foram a descoberta das terceira e última lei de movimento, depois chamada de princípio da ação e reação, a lei da gravitação universal e a conceituação precisa de massa, momento, inércia, força e aceleração. Com a demonstração da lei da gravitação estava criada a teoria da Mecânica Celeste, deslocando a descrição do mundo do terreno cinemático para o dinâmico. Estudou forças de resistência e de viscosidade nos fluidos em repouso e em movimento, estabelecendo princípios e relações e estabeleceu o cálculo da contração dos jatos em descargas por orifícios. Publicou também conclusões sobre escoamento em canais, velocidade de ondas superficiais e deslocamento do som no ar. Também escreveu sobre química, alquimia, cronologia e teologia. Modestamente caracterizou-se por nunca dar muita importância à publicações de suas descobertas.

Sites sobre Isaac Newton:

19 de fevereiro de 2011

Euclides Matematico


Euclides de Alexandria ( 360 a.C.295 a.C.) foi um  professor matemático platônico e matemático possivelmente  grego, muitas vezes referido como o "Pai da Geometria". Ele era ativo em Alexandria durante o reinado de Ptolomeu I (323-283 a.C.). Sua obra OS ELEMENTOS é uma das mais influentes na história da matemática, servindo como o principal livro para o ensino de matemática (especialmente geometria) desde a data da sua publicação até o fim do século XIX ou início do século XX. Nessa obra, os princípios do que é hoje chamado de geometria euclidiana foram deduzidos a partir de um pequeno conjunto de axiomas. Euclides também escreveu obras sobre perspectivas, seções cônicas, geometria esférica, teoria dos números e rigor.
A geometria euclidiana é caracterizada pelo espaço euclidiano, imutável, simétrico e geométrico, metáfora do saber na antiguidade clássica e que se manteve incólume no pensamento matemático medieval e renascentista, pois somente nos tempos modernos puderam ser construídos modelos de geometrias não-euclidianas.
SUA VIDA
Pouco se sabe sobre a vida de Euclides, pois há apenas poucas referências a ele. Na verdade, as referências fundamentais sobre Euclides foram escritas séculos depois que ele viveu, por proclo e pappus de Alexandria. Proclo apresenta Euclides apenas brevemente no seu Comentário sobre os Elementos, escrito no século V, onde escreve que Euclides foi o autor de Os Elementos, que foi mencionado por Arquimedes e que, quando Ptolomeu I perguntou a Euclides se não havia caminho mais curto para a geometria que Os Elementos, ele respondeu: "não há estrada real para a geometria". Embora a suposta citação de Euclides por Arquimedes foi considerada uma interpolação por editores posteriores de suas obras, ainda se acredita que Euclides escreveu suas obras antes das de Arquimedes. a outra única referência fundamental sobre Euclides, Pappus mencionou brevemente no século IV que Apolônio "passou muito tempo com os alunos de Euclides em Alexandria, e foi assim que ele adquiriu um hábito de pensamento tão científico".Também se acredita que Euclides pode ter estudado na Academia de Platão  na Grécia.
A data e local de nascimento de Euclides e da data e as circunstâncias de sua morte são desconhecidas, e só aproximadamente estimada pela  comparação com as figuras contemporâneas mencionadas nas referências. Nenhuma imagem ou descrição da aparência física de Euclides foi feita durante sua vida, em que foi vivida na antiguidade. Portanto, representação de Euclides em obras de arte é o produto da imaginação do artista.
Convidado por Ptolomeu I para compor o quadro de professores da recém fundada Academia, que tornaria Alexandria o centro do saber da época, tornou-se o mais importante autor de matemática da Antiguidade greco-romana e talvez de todos os tempos, com seu monumental, no estilo livro de texto, uma obra em treze volumes, sendo cinco sobre geometria plana, três sobre números, um sobre a teoria das proporções, um sobre incomensuráveis e os três últimos sobre geometria no espaço. Escrita em grego, a obra cobria toda a aritmética, a álgebra e a geometria conhecidas até então no mundo grego, reunindo o trabalho de seus predecessores, e sistematizava todo o conhecimento geométrico dos antigos e intercalava os teoremas já conhecidos então com a demonstração de muitos outros, que completavam lacunas e davam coerência e encadeamento lógico ao sistema por ele criado. Após sua primeira edição foi copiado e recopiado     inúmeras vezes e, vertido para o árabe (774), tornou-se o mais influente texto científico de todos os tempos e um dos com maior número de publicações ao longo da história. Depois da queda do Império Romano, os seus livros foram recuperados para a sociedade européia pelos estudiosos muçulmanos da península Ibérica. Escreveu ainda Óptica  sobre a óptica da visão e sobre astrologia, astronomia, música e mecânica, além de outros livros sobre matemática. Entre eles citam-se Lugares de superfície, Pseudaria, Porismas e mais algumas outras.
Algumas das suas obras como Os elementos, Os dados, outro livro de texto, uma espécie de manual de tabelas de uso interno na Academia e complemento dos seis primeiros volumes de Os Elementos, Divisão de figuras, sobre a divisão geométrica de figuras planas, Os Fenômenos, sobre astronomia, e Óptica, sobre a visão, sobreviveram parcialmente e hoje são, depois de A esfera de Autolito os mais antigos tratados científicos gregos existentes. Pela sua maneira de expor nos escritos deduz-se que tenha sido um habilíssimo professor.

8 de outubro de 2010

GEORGE CANTOR


George Ferdinand Ludwig Philipp Cantor
George Ferdinand Ludwig Philipp Cantor
 São Petersburgo, 3 de março de 1845 a Halle, 6 de janeiro de 1918 foi um matemático russo de origem alemã. Conhecido por ter elaborado a moderna teoria dos conjuntos. Foi a partir desta teoria que chegou ao conceito de número transfinito,  incluindo as classes numéricas dos cardinais e ordinais, estabelecendo a diferença entre estes dois conceitos, que colocam novos problemas quando se referem a conjuntos infinitos.
Filho  do comerciante dinamarquês, George Waldemar Cantor, e de uma musicista russa, Maria Anna Böhm. Em 1856 sua família mudou-se para a Alemanha,  continuando aí os seus estudos. Estudou no Instituto Federal de Tecnologia de Zurique. Doutorou-se na Universidade de Berlim em 1867.
Em 1872 foi docente na Universidade alemã de  Halle, onde obtém o título de professor em 1879. Toda a sua vida irá tentar em vão deixar Halle, tendo acabado por pensar que era vítima de uma conspiração.
Cantor provou que os conjuntos infinitos não têm todos a mesma  potência (potência significando "tamanho"). Fez a distinção entre conjuntos numeráveis (ou enumeráveis) (em inglês chamam-se countable - que se podem contar) e conjuntos contínuos (ou não-enumeráveis) (em inglês uncountable - que não se podem contar). Provou que o conjunto dos números racionais Q é  numerável, enquanto que o conjunto dos números reais IR é contínuo (logo, maior que o anterior). Na demonstração foi utilizado o célebre argumento da diagonal de Cantor ou método diagonal. Nos últimos anos de vida tentou provar, sem o conseguir, a "hipótese do contínuo", ou seja, que não existem conjuntos de potência intermédia entre os numeráveis e os contínuos - em 1963, Paul Coren demonstrou a indemonstrabilidade desta hipótese. Em 1897, Cantor descobriu vários paradoxos suscitados pela teoria dos conjuntos. 
Durante a última metade da sua vida sofreu repetidamente de ataques de depressão, o que comprometeu a sua capacidade de trabalho e o forçou a ficar hospitalizado várias vezes. Provavelmente ser-lhe-ia diagnosticado, hoje em dia, um transtorno bipolar - vulgo maníaco-depressivo. A descoberta doParadoxo de Russel conduziu-o a um esgotamento nervoso do qual não chegou a se recuperar. Começou, então, a se interessar por literatura e religião. Desenvolveu o seu conceito de Infinito Absoluto, que identificava a Deus. Ficou na penúria durante a primeira guerra mundial, morrendo num hospital psiquiátrico em Halle.
Os conceitos matemáticos inovadores propostos por Cantor enfrentaram uma resistência significativa por parte da comunidade matemática da época. Os matemáticos modernos, por seu lado, aceitam plenamente o trabalho desenvolvido por Cantor na sua Teoria dos conjuntos, reconhecendo-a como uma mudança de paradigma da maior importância.